
VISA
NI-VISA™ Programmer
Reference Manual
NI-VISA Programmer Reference Manual

September 2001 Edition
Part Number 370132B-01

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,
Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,
Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, China (Shanghai) 021 6555 7838,
China (ShenZhen) 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,
Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406,
Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Malaysia 603 9596711,
Mexico 5 280 7625, Netherlands 0348 433466, New Zealand 09 914 0488, Norway 32 27 73 00,
Poland 0 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085,
Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the
documentation, send e-mail to techpubs@ni.com.

Copyright © 1996, 2001 National Instruments Corporation. All rights reserved.

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF

NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR

DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY

THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
CVI™, LabVIEW™, Measurement Studio™, National Instruments™, NI™, NI-488™, NI-488.2™, ni.com™, NI-VISA™, and NI-VXI™ are
trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
The product described in this manual may be protected by one or more U.S. patents: U.S. Patent No(s). 5,724,272; 5,710,727; 5,847,955;
5,640,572; 5,771,388; 5,627,988; 5,717,614. Other U.S. and International Patents Pending.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v NI-VISA Programmer Reference Manual

Contents

About This Manual
How to Use the Manual Set ...xiii
Conventions ...xiii
Related Documentation..xiv

Chapter 1
Introduction

What You Need to Get Started ..1-1
VXIplug&play Overview ..1-1
Supported Platforms ..1-2

Chapter 2
Overview of the VISA API

VISA Access Mechanisms...2-1
Attributes ...2-1
Events ..2-1
Operations..2-2

VISA Resource Types ...2-2
INSTR..2-2
MEMACC ...2-3
INTFC..2-4
BACKPLANE ...2-4
SERVANT...2-4
SOCKET..2-5

Description of the API ...2-6

Chapter 3
Attributes

VI_ATTR_ASRL_ALLOW_TRANSMIT..3-2
VI_ATTR_ASRL_AVAIL_NUM...3-3
VI_ATTR_ASRL_BAUD ...3-4
VI_ATTR_ASRL_BREAK_LEN ...3-5
VI_ATTR_ASRL_BREAK_STATE...3-6
VI_ATTR_ASRL_CTS_STATE...3-7
VI_ATTR_ASRL_DATA_BITS...3-8
VI_ATTR_ASRL_DCD_STATE..3-9
VI_ATTR_ASRL_DISCARD_NULL ..3-10

Contents

NI-VISA Programmer Reference Manual vi ni.com

VI_ATTR_ASRL_DSR_STATE.. 3-11
VI_ATTR_ASRL_DTR_STATE.. 3-12
VI_ATTR_ASRL_END_IN.. 3-13
VI_ATTR_ASRL_END_OUT.. 3-14
VI_ATTR_ASRL_FLOW_CNTRL.. 3-15
VI_ATTR_ASRL_PARITY.. 3-17
VI_ATTR_ASRL_REPLACE_CHAR ... 3-18
VI_ATTR_ASRL_RI_STATE.. 3-19
VI_ATTR_ASRL_RTS_STATE .. 3-20
VI_ATTR_ASRL_STOP_BITS.. 3-21
VI_ATTR_ASRL_WIRE_MODE .. 3-22
VI_ATTR_ASRL_XOFF_CHAR... 3-23
VI_ATTR_ASRL_XON_CHAR .. 3-24
VI_ATTR_BUFFER ... 3-25
VI_ATTR_CMDR_LA ... 3-26
VI_ATTR_DEST_ACCESS_PRIV .. 3-27
VI_ATTR_DEST_BYTE_ORDER .. 3-28
VI_ATTR_DEST_INCREMENT ... 3-29
VI_ATTR_DEV_STATUS_BYTE... 3-30
VI_ATTR_DMA_ALLOW_EN ... 3-31
VI_ATTR_EVENT_TYPE ... 3-32
VI_ATTR_FDC_CHNL.. 3-33
VI_ATTR_FDC_MODE... 3-34
VI_ATTR_FDC_USE_PAIR.. 3-35
VI_ATTR_FILE_APPEND_EN ... 3-36
VI_ATTR_GPIB_ADDR_STATE.. 3-37
VI_ATTR_GPIB_ATN_STATE... 3-38
VI_ATTR_GPIB_CIC_STATE .. 3-39
VI_ATTR_GPIB_HS488_CBL_LEN... 3-40
VI_ATTR_GPIB_NDAC_STATE.. 3-41
VI_ATTR_GPIB_PRIMARY_ADDR.. 3-42
VI_ATTR_GPIB_READDR_EN.. 3-43
VI_ATTR_GPIB_RECV_CIC_STATE.. 3-44
VI_ATTR_GPIB_REN_STATE... 3-45
VI_ATTR_GPIB_SECONDARY_ADDR.. 3-46
VI_ATTR_GPIB_SRQ_STATE ... 3-47
VI_ATTR_GPIB_SYS_CNTRL_STATE .. 3-48
VI_ATTR_GPIB_UNADDR_EN... 3-49
VI_ATTR_IMMEDIATE_SERV ... 3-50
VI_ATTR_INTF_INST_NAME... 3-51
VI_ATTR_INTF_NUM .. 3-52
VI_ATTR_INTF_PARENT_NUM... 3-53
VI_ATTR_INTF_TYPE.. 3-54
VI_ATTR_INTR_STATUS_ID.. 3-55

Contents

© National Instruments Corporation vii NI-VISA Programmer Reference Manual

VI_ATTR_IO_PROT ..3-56
VI_ATTR_JOB_ID ...3-57
VI_ATTR_MAINFRAME_LA ...3-58
VI_ATTR_MANF_ID ...3-59
VI_ATTR_MANF_NAME ...3-60
VI_ATTR_MAX_QUEUE_LENGTH..3-61
VI_ATTR_MEM_BASE ...3-62
VI_ATTR_MEM_SIZE...3-63
VI_ATTR_MEM_SPACE...3-64
VI_ATTR_MODEL_CODE..3-65
VI_ATTR_MODEL_NAME...3-66
VI_ATTR_OPER_NAME...3-67
VI_ATTR_PXI_DEV_NUM...3-68
VI_ATTR_PXI_FUNC_NUM ..3-69
VI_ATTR_PXI_MEM_BASE_BAR0/VI_ATTR_PXI_MEM_BASE_BAR1/

VI_ATTR_PXI_MEM_BASE_BAR2/VI_ATTR_PXI_MEM_BASE_BAR3/
VI_ATTR_PXI_MEM_BASE_BAR4/VI_ATTR_PXI_MEM_BASE_BAR53-70

VI_ATTR_PXI_MEM_SIZE_BAR0/VI_ATTR_PXI_MEM_SIZE_BAR1/
VI_ATTR_PXI_MEM_SIZE_BAR2/VI_ATTR_PXI_MEM_SIZE_BAR3/
VI_ATTR_PXI_MEM_SIZE_BAR4/VI_ATTR_PXI_MEM_SIZE_BAR5.............3-71

VI_ATTR_PXI_MEM_TYPE_BAR0/VI_ATTR_PXI_MEM_TYPE_BAR1/
VI_ATTR_PXI_MEM_TYPE_BAR2/VI_ATTR_PXI_MEM_TYPE_BAR3/
VI_ATTR_PXI_MEM_TYPE_BAR4/VI_ATTR_PXI_MEM_TYPE_BAR5..........3-72

VI_ATTR_PXI_SUB_MANF_ID...3-73
VI_ATTR_PXI_SUB_MODEL_CODE ...3-74
VI_ATTR_RD_BUF_OPER_MODE ...3-75
VI_ATTR_RD_BUF_SIZE ...3-76
VI_ATTR_RECV_INTR_LEVEL ..3-77
VI_ATTR_RECV_TRIG_ID...3-78
VI_ATTR_RET_COUNT ...3-79
VI_ATTR_RM_SESSION ..3-80
VI_ATTR_RSRC_CLASS ..3-81
VI_ATTR_RSRC_IMPL_VERSION..3-82
VI_ATTR_RSRC_LOCK_STATE ...3-83
VI_ATTR_RSRC_MANF_ID...3-84
VI_ATTR_RSRC_MANF_NAME ...3-85
VI_ATTR_RSRC_NAME...3-86
VI_ATTR_RSRC_SPEC_VERSION..3-88
VI_ATTR_SEND_END_EN...3-89
VI_ATTR_SIGP_STATUS_ID...3-90
VI_ATTR_SLOT...3-91
VI_ATTR_SRC_ACCESS_PRIV ...3-92
VI_ATTR_SRC_BYTE_ORDER ...3-93
VI_ATTR_SRC_INCREMENT..3-94

Contents

NI-VISA Programmer Reference Manual viii ni.com

VI_ATTR_STATUS ... 3-95
VI_ATTR_SUPPRESS_END_EN.. 3-96
VI_ATTR_TCPIP_ADDR .. 3-97
VI_ATTR_TCPIP_DEVICE_NAME ... 3-98
VI_ATTR_TCPIP_HOSTNAME ... 3-99
VI_ATTR_TCPIP_KEEPALIVE.. 3-100
VI_ATTR_TCPIP_NODELAY .. 3-101
VI_ATTR_TCPIP_PORT ... 3-102
VI_ATTR_TERMCHAR .. 3-103
VI_ATTR_TERMCHAR_EN... 3-104
VI_ATTR_TMO_VALUE.. 3-105
VI_ATTR_TRIG_ID... 3-106
VI_ATTR_USER_DATA ... 3-107
VI_ATTR_VXI_DEV_CLASS... 3-108
VI_ATTR_VXI_LA.. 3-109
VI_ATTR_VXI_TRIG_STATUS... 3-110
VI_ATTR_VXI_TRIG_SUPPORT .. 3-111
VI_ATTR_VXI_VME_INTR_STATUS.. 3-112
VI_ATTR_VXI_VME_SYSFAIL_STATE.. 3-113
VI_ATTR_WIN_ACCESS ... 3-114
VI_ATTR_WIN_ACCESS_PRIV .. 3-115
VI_ATTR_WIN_BASE_ADDR... 3-116
VI_ATTR_WIN_BYTE_ORDER .. 3-117
VI_ATTR_WIN_SIZE .. 3-118
VI_ATTR_WR_BUF_OPER_MODE .. 3-119
VI_ATTR_WR_BUF_SIZE.. 3-120

Chapter 4
Events

VI_EVENT_ASRL_BREAK.. 4-2
VI_EVENT_ASRL_CHAR .. 4-3
VI_EVENT_ASRL_CTS .. 4-4
VI_EVENT_ASRL_DCD ... 4-5
VI_EVENT_ASRL_DSR.. 4-6
VI_EVENT_ASRL_RI.. 4-7
VI_EVENT_ASRL_TERMCHAR ... 4-8
VI_EVENT_CLEAR... 4-9
VI_EVENT_EXCEPTION.. 4-10
VI_EVENT_GPIB_CIC.. 4-12
VI_EVENT_GPIB_LISTEN... 4-13
VI_EVENT_GPIB_TALK.. 4-14
VI_EVENT_IO_COMPLETION.. 4-15
VI_EVENT_PXI_INTR.. 4-16

Contents

© National Instruments Corporation ix NI-VISA Programmer Reference Manual

VI_EVENT_SERVICE_REQ ...4-17
VI_EVENT_TRIG...4-18
VI_EVENT_VXI_SIGP ..4-19
VI_EVENT_VXI_VME_INTR...4-20
VI_EVENT_VXI_VME_SYSFAIL..4-21
VI_EVENT_VXI_VME_SYSRESET...4-22

Chapter 5
Operations

viAssertIntrSignal ..5-2
viAssertTrigger ..5-4
viAssertUtilSignal..5-7
viBufRead ..5-9
viBufWrite ...5-12
viClear..5-14
viClose ...5-16
viDisableEvent...5-18
viDiscardEvents ...5-20
viEnableEvent ..5-22
viEventHandler ..5-25
viFindNext ...5-27
viFindRsrc..5-29
viFlush ...5-34
viGetAttribute ..5-37
viGpibCommand..5-39
viGpibControlATN..5-41
viGpibControlREN ..5-44
viGpibPassControl ...5-46
viGpibSendIFC ..5-48
viIn8/viIn16/viIn32...5-50
viInstallHandler ...5-53
viLock ..5-55
viMapAddress ..5-58
viMapTrigger ...5-61
viMemAlloc ...5-64
viMemFree...5-66
viMove ...5-68
viMoveAsync...5-71
viMoveIn8/viMoveIn16/viMoveIn32...5-74
viMoveOut8/viMoveOut16/viMoveOut32...5-77
viOpen..5-80
viOpenDefaultRM ...5-85
viOut8/viOut16/viOut32...5-87

Contents

NI-VISA Programmer Reference Manual x ni.com

viParseRsrc .. 5-90
viPeek8/viPeek16/viPeek32... 5-92
viPoke8/viPoke16/viPoke32 .. 5-94
viPrintf ... 5-96
viQueryf... 5-106
viRead.. 5-108
viReadAsync.. 5-111
viReadSTB .. 5-113
viReadToFile ... 5-115
viScanf... 5-118
viSetAttribute .. 5-128
viSetBuf... 5-130
viSPrintf... 5-132
viSScanf... 5-134
viStatusDesc .. 5-136
viTerminate.. 5-138
viUninstallHandler .. 5-140
viUnlock .. 5-142
viUnmapAddress ... 5-144
viUnmapTrigger .. 5-146
viVPrintf .. 5-149
viVQueryf.. 5-151
viVScanf .. 5-153
viVSPrintf.. 5-155
viVSScanf.. 5-157
viVxiCommandQuery ... 5-159
viWaitOnEvent .. 5-162
viWrite... 5-165
viWriteAsync... 5-167
viWriteFromFile .. 5-169

Appendix A
Status Codes

Appendix B
Resources

Appendix C
Technical Support Resources

Contents

© National Instruments Corporation xi NI-VISA Programmer Reference Manual

Glossary

Index

© National Instruments Corporation xiii NI-VISA Programmer Reference Manual

About This Manual

This manual describes the attributes, events, and operations that comprise
the VISA Application Programming Interface (API). This manual is meant
to be used with the NI-VISA User Manual.

How to Use the Manual Set
If you are using NI-VISA with another National Instruments product
(LabVIEW, Measurement Studio, NI-488, NI-VXI, etc.), verify that you
have installed NI-VISA as a component of that product’s installer. If you
have not yet installed NI-VISA, you can do so by inserting the NI-VISA
CD into your computer and running the appropriate installer for your
operating system.

For all Windows operating systems, the OS launches the NI-VISA installer
automatically when you insert the CD. Use Measurement & Automation
Explorer (MAX) to configure your system.

Use the NI-VISA User Manual for detailed information on how to program
using VISA.

Use the NI-VISA Programmer Reference Manual for specific information
about the attributes, events, and operations, such as format, syntax,
parameters, and possible errors.

Conventions
The following conventions appear in this manual:

<> Angle brackets that contain numbers separated by an ellipsis represent a
range of values associated with a bit or signal name—for example,
DBIO<3..0>.

[] Square brackets enclose optional items—for example, [response].

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

About This Manual

NI-VISA Programmer Reference Manual xiv ni.com

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Related Documentation
The following documents contain information that you may find helpful as
you read this manual:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface
for Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats,
Protocols, and Common Commands

• ANSI/IEEE Standard 1014-1987, IEEE Standard for a Versatile
Backplane Bus: VMEbus

• ANSI/IEEE Standard 1155-1992, VMEbus Extensions for
Instrumentation: VXIbus

• ANSI/ISO Standard 9899-1990, Programming Language C

• NI-488.2 Function Reference Manual for DOS/Windows, National
Instruments Corporation

• NI-488.2 User Manual for Windows, National Instruments
Corporation

• NI-VXI Online Help, National Instruments Corporation

• PXI Specification: PCI eXtensions for Instrumentation, National
Instruments Corporation

• VPP-1, Charter Document

• VPP-2, System Frameworks Specification

• VPP-3.1, Instrument Drivers Architecture and Design Specification

About This Manual

© National Instruments Corporation xv NI-VISA Programmer Reference Manual

• VPP-3.2, Instrument Driver Developers Specification

• VPP-3.3, Instrument Driver Function Panel Specification

• VPP-4.3, The VISA Library

• VPP-4.3.2, VISA Implementation Specification for Textual Languages

• VPP-4.3.3, VISA Implementation Specification for the G Language

• VPP-6, Installation and Packaging Specification

• VPP-7, Soft Front Panel Specification

• VPP-8, VXI Module/Mainframe to Receiver Interconnection

• VPP-9, Instrument Vendor Abbreviations

• VXI-11, TCP/IP Instrument Protocol, VXIbus Consortium

© National Instruments Corporation 1-1 NI-VISA Programmer Reference Manual

1
Introduction

This chapter lists what you need to get started and presents a brief overview
of VISA.

What You Need to Get Started

❑ Appropriate hardware support in the form of a National Instruments
GPIB, GPIB-VXI, MXI/VXI or serial interface board. For other
hardware interfaces, the computer’s standard ports should be sufficient
for most applications.

❑ For GPIB applications, you need to install NI-488. For VXI
applications, you need to install NI-VXI. For other hardware
interfaces, NI-VISA uses the system’s standard drivers.

❑ NI-VISA distribution media.

❑ If you have a GPIB-VXI command module from another vendor,
you need that vendor’s GPIB-VXI VISA component.

❑ To download the latest version of the NI-VISA distribution media,
point your web browser to ni.com/visa.

VXIplug&play Overview
The main objective of the VXIplug&play Systems Alliance is to increase
ease of use for end users through open, multivendor systems. The alliance
members share a common vision for multivendor systems architecture,
encompassing both hardware and software. This common vision enables
the members to work together to define and implement standards for
system-level issues.

As a step toward industry-wide software compatibility, the alliance
developed one specification for I/O software—the Virtual Instrument
System Architecture, or VISA. The VISA specification defines a
next-generation I/O software standard not only for VXI, but also for GPIB,

Chapter 1 Introduction

NI-VISA Programmer Reference Manual 1-2 ni.com

Serial, and other interfaces. With the VISA standard endorsed by more than
35 of the largest instrumentation companies in the industry including
Tektronix, Hewlett-Packard, and National Instruments, VISA unifies the
industry to make software interoperable, reusable, and able to stand the test
of time. The alliance also grouped the most popular operating systems,
application development environments, and programming languages into
distinct frameworks and defined in-depth specifications to guarantee
interoperability of components within each framework.

Supported Platforms
This manual and the NI-VISA User Manual describe how to use NI-VISA,
the National Instruments implementation of the VISA I/O standard, in any
environment using LabWindows/CVI, any ANSI C compiler, or Microsoft
Visual Basic. NI-VISA currently supports the frameworks and
programming languages shown in Table 1-1. For information on
programming VISA from LabVIEW, refer to the VISA documentation
included with your LabVIEW software.

Table 1-1. NI-VISA Support

Operating System
Programming Language/

Environment Framework

Windows Me/98/95 LabWindows/CVI, ANSI C,
Visual Basic

WIN95

Windows Me/98/95 LabVIEW GWIN95

Windows 2000/NT/XP LabWindows/CVI, ANSI C,
Visual Basic

WINNT

Windows 2000/NT/XP LabVIEW GWINNT

LabVIEW RT LabVIEW *

Solaris 2.x LabWindows/CVI, ANSI C SUN

Solaris 2.x LabVIEW GSUN

Mac OS X/9/8 ANSI C, LabVIEW *

Linux x86 ANSI C, LabVIEW *

VxWorks x86 ANSI C *

* This framework is supported by NI-VISA even though it is not defined by the
VXIplug&play Systems Alliance.

Chapter 1 Introduction

© National Instruments Corporation 1-3 NI-VISA Programmer Reference Manual

The VXIplug&play Systems Alliance developed the concept of a
framework to categorize operating systems, programming languages,
and I/O software libraries to bring the most useful products to the most
end-users. A framework is a logical grouping of the choices that you face
when designing a VXI system. You must always choose an operating
system and a programming language along with an application
development environment (ADE) when building a system. There are
trade-offs associated with each of these decisions; many configurations are
possible. The VXIplug&play Systems Alliance grouped the most popular
operating systems, programming languages, and ADEs into distinct
frameworks and defined in-depth specifications to guarantee
interoperability of the components within each framework. To claim
VXIplug&play compliance, a component must be compliant within a
given framework.

With this version of NI-VISA, you can perform message-based and
register-based communication with instruments, assert triggers, share
memory, and respond to interrupts and triggers. For VXI, you can also
perform register accesses at the interface level and mainframe-specific
control and monitoring of utility lines. For GPIB, you can also perform
board-level commands and the control and monitoring of bus lines.
NI-VISA provides all the I/O functionality that you need for your test
and measurement application.

© National Instruments Corporation 2-1 NI-VISA Programmer Reference Manual

2
Overview of the VISA API

This chapter contains an overview of the VISA Application Programming
Interface (API).

You can use this manual as a reference to the VISA API. This API is
partitioned into three distinct mechanisms that access information on a
given resource: attributes, events, and operations.

VISA Access Mechanisms
The following paragraphs summarize the most important characteristics
of attributes, events, and operations. Please refer to Chapter 3, VISA
Overview, in the NI-VISA User Manual for a more detailed description
of this subject.

Attributes
An attribute describes a value within a session or resource that reflects a
characteristic of the operational state of the given object. These attributes
are accessed through the following operations:

• viGetAttribute()

• viSetAttribute()

Events
An event is an asynchronous occurrence that is independent of the normal
sequential execution of the process running in a system. Depending on how
you want to handle event occurrences, you can use the viEnableEvent()
operation with either the viInstallHandler() operation or the
viWaitOnEvent() operation.

Events respond to attributes in the same manner that resources do.
Once your application is done using a particular event received via
viWaitOnEvent(), it should call viClose() to destroy that event.

Chapter 2 Overview of the VISA API

NI-VISA Programmer Reference Manual 2-2 ni.com

Operations
An operation is an action defined by a resource that can be performed
on the given resource. Each resource has the ability to define a series of
operations. In addition to those defined by each resource you can use the
following template operations in any resource:

• viClose()

• viGetAttribute()

• viSetAttribute()

• viStatusDesc()

• viTerminate()

• viLock()

• viUnlock()

• viEnableEvent()

• viDisableEvent()

• viDiscardEvents()

• viWaitOnEvent()

• viInstallHandler()

• viUninstallHandler()

VISA Resource Types
Currently, there are several VISA resource types—INSTR, MEMACC,
INTFC, BACKPLANE, SERVANT, and SOCKET. Most VISA
applications and instrument drivers use only the INSTR Resource.

INSTR
A VISA Instrument Control (INSTR) Resource lets a controller interact
with the device associated with the given resource. This resource type
grants the controller the following services to perform message-based
and/or register-based I/O, depending on the type of device and the interface
to which the device is connected.

Basic I/O services include the ability to send and receive blocks of data
to and from the device. The meaning of the data is device dependent, and
could be a message, command, or other binary encoded data. For devices
compliant with IEEE-488, the basic I/O services also include triggering
(both software and hardware), servicing requests, reading status bytes, and
clearing the device.

Chapter 2 Overview of the VISA API

© National Instruments Corporation 2-3 NI-VISA Programmer Reference Manual

Formatted I/O services provide both formatted and buffered I/O
capabilities for data transfers to and from devices. The formatting
capabilities include those specified by ANSI C, with extensions for
common protocols used by instrumentation systems. Buffering improves
system performance by making it possible to not only transfer large blocks
of data, but also send several commands at one time.

Memory I/O (or Register I/O) services allow register-level access to
devices connected to interfaces that support direct memory access, such as
the VXIbus or VMEbus. Both high-level and low-level access services have
operations for individual register accesses, with a trade-off between speed
and complexity. The high-level access services also have operations for
moving large blocks of data to and from devices. When using an INSTR
Resource, all address parameters are relative to the device’s assigned
memory base in the given address space; knowing a device’s base address
is neither required by nor relevant to the user.

Shared Memory services make it possible to allocate memory on a
particular device that is to be used exclusively by a given session. This is
usually available only on devices that export shared memory specifically
for such a purpose, such as a VXIbus or VMEbus controller.

MEMACC
A VISA Memory Access (MEMACC) Resource lets a controller interact
with the interface associated with the given resource. Advanced users
who need to perform memory accesses directly between multiple devices
typically use the MEMACC Resource. This resource type gives the
controller the following services to access arbitrary registers or memory
addresses on memory-mapped buses.

Memory I/O (or Register I/O) services allow register level access to
interfaces that support direct memory access, such as the VXIbus or
VMEbus. Both high-level and low-level access services have operations
for individual register accesses, with a trade-off between speed and
complexity. The high-level access services also have operations for moving
large blocks of data to and from arbitrary addresses. When using a
MEMACC Resource, all address parameters are absolute within the given
address space; knowing a device’s base address is both required by and
relevant to the user.

Chapter 2 Overview of the VISA API

NI-VISA Programmer Reference Manual 2-4 ni.com

INTFC
A VISA GPIB Bus Interface (INTFC) Resource lets a controller interact
with any devices connected to the board associated with the given resource.
Advanced GPIB users who need to control multiple devices simultaneously
or need to have multiple controllers in a single system typically use the
INTFC Resource. This resource type provides basic and formatted I/O
services as described below. In addition, the controller can directly query
and manipulate specific lines on the bus, and also pass control to other
devices with controller capability.

Basic I/O services include the ability to send and receive blocks of data
onto and from the bus. The meaning of the data is device dependent, and
could be a message, command, or other binary encoded data. The basic I/O
services also include triggering devices on the bus and sending
miscellaneous commands to any or all devices.

Formatted I/O services provide both formatted and buffered I/O
capabilities for data transfers to and from devices. The formatting
capabilities include those specified by ANSI C, with extensions for
common protocols used by instrumentation systems. Buffering improves
system performance by making it possible to not only transfer large blocks
of data, but also send several commands at one time.

BACKPLANE
A VISA VXI Mainframe Backplane (BACKPLANE) Resource
encapsulates the operations and properties of each mainframe (or chassis)
in a VXIbus system. This resource type lets a controller query and
manipulate specific lines on a specific mainframe in a given VXI system.
BACKPLANE services allow the user to map, unmap, assert, and receive
hardware triggers, and also to assert and receive various utility and
interrupt signals. This includes advanced functionality that might not be
available in all implementations or on all controllers.

SERVANT
A VISA Servant (SERVANT) Resource encapsulates the operations and
properties of the capabilities of a device and a device’s view of the system
in which it exists. The SERVANT Resource exposes the device-side
functionality of the device associated with the given resource. The
SERVANT Resource is a class for advanced users who want to write
firmware code that exports message-based device functionality across
potentially multiple interfaces. This resource type provides basic and
formatted I/O services as described below.

Chapter 2 Overview of the VISA API

© National Instruments Corporation 2-5 NI-VISA Programmer Reference Manual

Basic I/O services include the ability to receive blocks of data from a
commander and respond with blocks of data in return. The meaning of the
data is device dependent, and could be a message, command, or other
binary encoded data. The basic I/O services also include setting a 488-style
status byte and receiving device clear and trigger events.

Formatted I/O services provide both formatted and buffered I/O
capabilities for data transfers from and to the given device's commander.
The formatting capabilities include those specified by ANSI C, with
extensions for common protocols used by instrumentation systems.
Buffering improves system performance by making it possible to not only
transfer large blocks of data, but also send several commands at one time.

A VXI Servant Resource also provides services to assert and receive
various utility and interrupt signals.

SOCKET
A VISA Ethernet Socket (SOCKET) Resource encapsulates the operations
and properties of the capabilities of a raw Ethernet connection using
TCP/IP. The SOCKET Resource exposes the capability of a raw socket
connection over TCP/IP. This resource type provides basic and formatted
I/O services as described below.

Basic I/O services include the ability to send and receive blocks of data to
and from the device. The meaning of the data is device dependent, and
could be a message, command, or other binary encoded data. If the device
is capable of communicating with 488.2-style strings, the basic I/O services
also include software triggering, querying a 488-style status byte, and
sending a device clear message.

Formatted I/O services provide both formatted and buffered I/O
capabilities for data transfers to and from devices. The formatting
capabilities include those specified by ANSI C, with extensions for
common protocols used by instrumentation systems. Buffering improves
system performance by making it possible to not only transfer large blocks
of data, but also send several commands at one time.

Description of the API
The following three chapters describe the individual attributes, events,
and operations. These are listed in alphabetical order within each access
mechanism. Since a particular item can refer to more than one resource or
interface type, each item is clearly marked with the resource and interface
that support it.

Refer to Appendix B, Resources, for a quick reference of how the
attributes, events, and operations map to the available resources.

© National Instruments Corporation 3-1 NI-VISA Programmer Reference Manual

3
Attributes

This chapter describes the VISA attributes. The attribute descriptions are listed in alphabetical
order for easy reference.

Each attribute description contains a list below the title indicating the supported resource
classes, such as GPIB, Serial, etc. The Attribute Information table lists the access privilege,
the data type, range of values, and the default value.

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-2 ni.com

VI_ATTR_ASRL_ALLOW_TRANSMIT

Resource Classes
Serial INSTR

Attribute Information

Description
If set to VI_FALSE, it suspends transmission as if an XOFF character has been received. If set
to VI_TRUE, it resumes transmission as if an XON character has been received.

If XON/XOFF flow control (software handshaking) is not being used, it is invalid to set this
attribute to VI_FALSE.

Related Items
See the VI_ATTR_ASRL_FLOW_CNTRL description in this chapter. Also see the INSTR
Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Global

ViBoolean VI_TRUE (1)

VI_FALSE (0)

VI_TRUE

Chapter 3 Attributes

© National Instruments Corporation 3-3 NI-VISA Programmer Reference Manual

VI_ATTR_ASRL_AVAIL_NUM

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_AVAIL_NUM shows the number of bytes available in the global receive
buffer.

Related Items
See the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt32 0 to FFFFFFFFh N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-4 ni.com

VI_ATTR_ASRL_BAUD

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_BAUD is the baud rate of the interface. It is represented as an unsigned 32-bit
integer so that any baud rate can be used, but it usually requires a commonly used rate such
as 300, 1200, 2400, or 9600 baud.

Related Items
See the VI_ATTR_ASRL_DATA_BITS, VI_ATTR_ASRL_FLOW_CNTRL,
VI_ATTR_ASRL_PARITY, and VI_ATTR_ASRL_STOP_BITS descriptions in this chapter.
Also see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Global

ViUInt32 0 to FFFFFFFFh 9600

Chapter 3 Attributes

© National Instruments Corporation 3-5 NI-VISA Programmer Reference Manual

VI_ATTR_ASRL_BREAK_LEN

Resource Classes
Serial INSTR

Attribute Information

Description
This controls the duration (in milliseconds) of the break signal asserted when
VI_ATTR_ASRL_END_OUT is set to VI_ASRL_END_BREAK. To manually control the assertion
state and length of a break signal, use the VI_ATTR_ASRL_BREAK_STATE attribute instead.

Related Items
See the VI_ATTR_ASRL_BREAK_STATE and VI_ATTR_ASRL_END_OUT descriptions in this
chapter. Also see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViInt16 1 to 500 250

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-6 ni.com

VI_ATTR_ASRL_BREAK_STATE

Resource Classes
Serial INSTR

Attribute Information

Description
If set to VI_STATE_ASSERTED, it suspends character transmission and places the
transmission line in a break state until this attribute is reset to VI_STATE_UNASSERTED. This
attribute lets you manually control the assertion state and length of a break signal. If you want
VISA to automatically send a break signal after each write operation, use the
VI_ATTR_ASRL_BREAK_LEN and VI_ATTR_ASRL_END_OUT attributes instead.

Related Items
See the VI_ATTR_ASRL_BREAK_LEN, VI_ATTR_ASRL_END_OUT, and
VI_ATTR_ASRL_ALLOW_TRANSMIT descriptions in this chapter. Also see the INSTR
Resource description in Appendix B, Resources.

Access
Privilege

Data
Type Range Default

Read/Write
Global

ViInt16 VI_STATE_ASSERTED (1)

VI_STATE_UNASSERTED (0)

VI_STATE_UNKNOWN (-1)

VI_STATE_UNASSERTED

Chapter 3 Attributes

© National Instruments Corporation 3-7 NI-VISA Programmer Reference Manual

VI_ATTR_ASRL_CTS_STATE

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_CTS_STATE shows the current state of the Clear To Send (CTS) input
signal.

Related Items
See the VI_ATTR_ASRL_DCD_STATE, VI_ATTR_ASRL_DSR_STATE,
VI_ATTR_ASRL_DTR_STATE, VI_ATTR_ASRL_RI_STATE, and
VI_ATTR_ASRL_RTS_STATE descriptions in this chapter. Also see the INSTR
Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViInt16 VI_STATE_ASSERTED (1)

VI_STATE_UNASSERTED (0)

VI_STATE_UNKNOWN (–1)

N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-8 ni.com

VI_ATTR_ASRL_DATA_BITS

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_DATA_BITS is the number of data bits contained in each frame (from 5 to 8).
The data bits for each frame are located in the low-order bits of every byte stored in memory.

Related Items
See the VI_ATTR_ASRL_BAUD, VI_ATTR_ASRL_FLOW_CNTRL, VI_ATTR_ASRL_PARITY,
and VI_ATTR_ASRL_STOP_BITS descriptions in this chapter. Also see the INSTR Resource
description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Global

ViUInt16 5 to 8 8

Chapter 3 Attributes

© National Instruments Corporation 3-9 NI-VISA Programmer Reference Manual

VI_ATTR_ASRL_DCD_STATE

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_DCD_STATE shows the current state of the Data Carrier Detect (DCD) input
signal. The DCD signal is often used by modems to indicate the detection of a carrier (remote
modem) on the telephone line. The DCD signal is also known as Receive Line Signal Detect
(RLSD).

Related Items
See the VI_ATTR_ASRL_CTS_STATE, VI_ATTR_ASRL_DSR_STATE,
VI_ATTR_ASRL_DTR_STATE, VI_ATTR_ASRL_RI_STATE, and
VI_ATTR_ASRL_RTS_STATE descriptions in this chapter. Also see the INSTR
Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViInt16 VI_STATE_ASSERTED (1)

VI_STATE_UNASSERTED (0)

VI_STATE_UNKNOWN (–1)

N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-10 ni.com

VI_ATTR_ASRL_DISCARD_NULL

Resource Classes
Serial INSTR

Attribute Information

Description
If set to VI_TRUE, NUL characters are discarded. Otherwise, they are treated as normal data
characters. For binary transfers, you should set this attribute to VI_FALSE.

Related Items
See the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Global

ViBoolean VI_TRUE (1)

VI_FALSE (0)

VI_FALSE

Chapter 3 Attributes

© National Instruments Corporation 3-11 NI-VISA Programmer Reference Manual

VI_ATTR_ASRL_DSR_STATE

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_DSR_STATE shows the current state of the Data Set Ready (DSR) input
signal.

Related Items
See the VI_ATTR_ASRL_CTS_STATE, VI_ATTR_ASRL_DCD_STATE,
VI_ATTR_ASRL_DTR_STATE, VI_ATTR_ASRL_RI_STATE, and
VI_ATTR_ASRL_RTS_STATE descriptions in this chapter. Also see the INSTR
Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViInt16 VI_STATE_ASSERTED (1)

VI_STATE_UNASSERTED (0)

VI_STATE_UNKNOWN (–1)

N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-12 ni.com

VI_ATTR_ASRL_DTR_STATE

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_DTR_STATE shows the current state of the Data Terminal Ready
(DTR) input signal. When the VI_ATTR_ASRL_FLOW_CNTRL attribute is set to
VI_ASRL_FLOW_DTR_DSR, this attribute is ignored when changed, but can be read to
determine whether the background flow control is asserting or unasserting the signal.

Related Items
See the VI_ATTR_ASRL_CTS_STATE, VI_ATTR_ASRL_DCD_STATE,
VI_ATTR_ASRL_DSR_STATE, VI_ATTR_ASRL_RI_STATE, and
VI_ATTR_ASRL_RTS_STATE descriptions in this chapter. Also see the INSTR Resource
description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Global

ViInt16 VI_STATE_ASSERTED (1)

VI_STATE_UNASSERTED (0)

VI_STATE_UNKNOWN (–1)

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-13 NI-VISA Programmer Reference Manual

VI_ATTR_ASRL_END_IN

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_END_IN indicates the method used to terminate read operations.

• If it is set to VI_ASRL_END_NONE, the read will not terminate until all of the requested
data is received (or an error occurs).

• If it is set to VI_ASRL_END_LAST_BIT, the read will terminate as soon as a character
arrives with its last bit set. For example, if VI_ATTR_ASRL_DATA_BITS is set to 8, the
read will terminate when a character arrives with the 8th bit set.

• If it is set to VI_ASRL_END_TERMCHAR, the read will terminate as soon as the character
in VI_ATTR_TERMCHAR is received. In this case, VI_ATTR_TERMCHAR_EN is ignored.

Because the default value of VI_ATTR_TERMCHAR is 0Ah (linefeed), read operations on serial
ports will stop reading whenever a linefeed is encountered. To change this behavior, you
must change the value of one of these attributes—VI_ATTR_ASRL_END_IN or
VI_ATTR_TERMCHAR.

Related Items
See the VI_ATTR_ASRL_END_OUT and VI_ATTR_TERMCHAR descriptions in this chapter.
Also see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt16 VI_ASRL_END_NONE (0)

VI_ASRL_END_LAST_BIT (1)

VI_ASRL_END_TERMCHAR (2)

VI_ASRL_END_TERMCHAR

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-14 ni.com

VI_ATTR_ASRL_END_OUT

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_END_OUT indicates the method used to terminate write operations.

• If it is set to VI_ASRL_END_NONE, the write will not append anything to the data being
written.

• If it is set to VI_ASRL_END_LAST_BIT, the write will send all but the last character
with the last bit clear, then transmit the last character with the last bit set. For example,
if VI_ATTR_ASRL_DATA_BITS is set to 8, the write will clear the 8th bit for all but the
last character, then transmit the last character with the 8th bit set.

• If it is set to VI_ASRL_END_TERMCHAR, the write will send the character in
VI_ATTR_TERMCHAR after the data being transmitted.

• If it is set to VI_ASRL_END_BREAK, the write will transmit a break after all the characters
for the write have been sent.

Related Items
See the VI_ATTR_ASRL_END_IN and VI_ATTR_TERMCHAR descriptions in this chapter. Also
see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt16 VI_ASRL_END_NONE (0)

VI_ASRL_END_LAST_BIT (1)

VI_ASRL_END_TERMCHAR (2)

 VI_ASRL_END_BREAK (3)

VI_ASRL_END_NONE

Chapter 3 Attributes

© National Instruments Corporation 3-15 NI-VISA Programmer Reference Manual

VI_ATTR_ASRL_FLOW_CNTRL

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_FLOW_CNTRL indicates the type of flow control used by the transfer
mechanism.

• If this attribute is set to VI_ASRL_FLOW_NONE, the transfer mechanism does not use flow
control, and buffers on both sides of the connection are assumed to be large enough to
hold all data transferred.

• If this attribute is set to VI_ASRL_FLOW_XON_XOFF, the transfer mechanism uses the
XON and XOFF characters to perform flow control. The transfer mechanism controls input
flow by sending XOFF when the receive buffer is nearly full, and it controls the output
flow by suspending transmission when XOFF is received.

• If this attribute is set to VI_ASRL_FLOW_RTS_CTS, the transfer mechanism uses the RTS
output signal and the CTS input signal to perform flow control. The transfer mechanism
controls input flow by unasserting the RTS signal when the receive buffer is nearly full,
and it controls output flow by suspending the transmission when the CTS signal is
unasserted.

• If this attribute is set to VI_ASRL_FLOW_DTR_DSR, the transfer mechanism uses the DTR
output signal and the DSR input signal to perform flow control. The transfer mechanism
controls input flow by unasserting the DTR signal when the receive buffer is nearly full,
and it controls output flow by suspending the transmission when the DSR signal is
unasserted.

This attribute can specify multiple flow control mechanisms by bit-ORing multiple values
together. However, certain combinations may not be supported by all serial ports and/or
operating systems.

Access
Privilege Data Type Range Default

Read/Write
Global

ViUInt16 VI_ASRL_FLOW_NONE (0)

VI_ASRL_FLOW_XON_XOFF (1)

VI_ASRL_FLOW_RTS_CTS (2)

VI_ASRL_FLOW_DTR_DSR (4)

VI_ASRL_FLOW_NONE

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-16 ni.com

Related Items
See the VI_ATTR_ASRL_BAUD, VI_ATTR_ASRL_DATA_BITS, VI_ATTR_ASRL_PARITY,
VI_ATTR_ASRL_STOP_BITS, VI_ATTR_ASRL_XON_CHAR, and
VI_ATTR_ASRL_XOFF_CHAR descriptions in this chapter. Also see the INSTR Resource
description in Appendix B, Resources.

Chapter 3 Attributes

© National Instruments Corporation 3-17 NI-VISA Programmer Reference Manual

VI_ATTR_ASRL_PARITY

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_PARITY is the parity used with every frame transmitted and received.

• VI_ASRL_PAR_MARK means that the parity bit exists and is always 1.

• VI_ASRL_PAR_SPACE means that the parity bit exists and is always 0.

Related Items
See the VI_ATTR_ASRL_BAUD, VI_ATTR_ASRL_DATA_BITS,
VI_ATTR_ASRL_FLOW_CNTRL, and VI_ATTR_ASRL_STOP_BITS descriptions in this
chapter. Also see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Global

ViUInt16 VI_ASRL_PAR_NONE (0)

VI_ASRL_PAR_ODD (1)

VI_ASRL_PAR_EVEN (2)

VI_ASRL_PAR_MARK (3)

VI_ASRL_PAR_SPACE (4)

VI_ASRL_PAR_NONE

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-18 ni.com

VI_ATTR_ASRL_REPLACE_CHAR

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_REPLACE_CHAR specifies the character to be used to replace incoming
characters that arrive with errors (such as parity error).

Related Items
See the VI_ATTR_ASRL_PARITY description in this chapter. See the INSTR Resource
description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt8 0 to FFh 0

Chapter 3 Attributes

© National Instruments Corporation 3-19 NI-VISA Programmer Reference Manual

VI_ATTR_ASRL_RI_STATE

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_RI_STATE shows the current state of the Ring Indicator (RI) input signal.
The RI signal is often used by modems to indicate that the telephone line is ringing.

Related Items
See the VI_ATTR_ASRL_CTS_STATE, VI_ATTR_ASRL_DCD_STATE,
VI_ATTR_ASRL_DSR_STATE, VI_ATTR_ASRL_DTR_STATE, and
VI_ATTR_ASRL_RTS_STATE descriptions in this chapter. Also see the INSTR Resource
description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViInt16 VI_STATE_ASSERTED (1)

VI_STATE_UNASSERTED (0)

VI_STATE_UNKNOWN (–1)

N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-20 ni.com

VI_ATTR_ASRL_RTS_STATE

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_RTS_STATE is used to manually assert or unassert the Request To
Send (RTS) output signal. When the VI_ATTR_ASRL_FLOW_CNTRL attribute is set to
VI_ASRL_FLOW_RTS_CTS, this attribute is ignored when changed, but can be read to
determine whether the background flow control is asserting or unasserting the signal.

Related Items
See the VI_ATTR_ASRL_CTS_STATE, VI_ATTR_ASRL_DCD_STATE,
VI_ATTR_ASRL_DSR_STATE, VI_ATTR_ASRL_DTR_STATE, and
VI_ATTR_ASRL_RI_STATE descriptions in this chapter. Also see the INSTR Resource
description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Global

ViInt16 VI_STATE_ASSERTED (1)

VI_STATE_UNASSERTED (0)

VI_STATE_UNKNOWN (–1)

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-21 NI-VISA Programmer Reference Manual

VI_ATTR_ASRL_STOP_BITS

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_STOP_BITS is the number of stop bits used to indicate the end of a frame.
The value VI_ASRL_STOP_ONE5 indicates one-and-one-half (1.5) stop bits.

Related Items
See the VI_ATTR_ASRL_BAUD, VI_ATTR_ASRL_DATA_BITS,
VI_ATTR_ASRL_FLOW_CNTRL, and VI_ATTR_ASRL_PARITY descriptions in this chapter.
Also see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Global

ViUInt16 VI_ASRL_STOP_ONE (10)

VI_ASRL_STOP_ONE5 (15)

VI_ASRL_STOP_TWO (20)

VI_ASRL_STOP_ONE

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-22 ni.com

VI_ATTR_ASRL_WIRE_MODE

Resource Classes
Serial INSTR

Attribute Information

Description
This attribute is valid only with the RS-485 serial driver developed by National Instruments,
and sets the transceiver mode.

• VI_ASRL_WIRE4 uses 4-wire mode.

• VI_ASRL_WIRE2_DTR_ECHO uses 2-wire DTR mode controlled with echo.

• VI_ASRL_WIRE2_DTR_CTRL uses 2-wire DTR mode controlled without echo.

• VI_ASRL_WIRE2_AUTO uses 2-wire auto mode controlled with TXRDY.

Note This attribute is valid only on the platforms on which National Instruments supports
its RS-485 products.

Related Items
See the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Global

ViInt16 VI_ASRL_WIRE4 (0)

VI_ASRL_WIRE2_DTR_ECHO (1)

VI_ASRL_WIRE2_DTR_CTRL (2)

VI_ASRL_WIRE2_AUTO (3)

VI_STATE_UNKNOWN (-1)

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-23 NI-VISA Programmer Reference Manual

VI_ATTR_ASRL_XOFF_CHAR

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_XOFF_CHAR specifies the value of the XOFF character used for XON/XOFF
flow control (both directions). If XON/XOFF flow control (software handshaking) is not
being used, the value of this attribute is ignored.

Related Items
See the VI_ATTR_ASRL_XON_CHAR and VI_ATTR_ASRL_FLOW_CNTRL descriptions in this
chapter. Also see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt8 0 to FFh <Control-S> (13h)

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-24 ni.com

VI_ATTR_ASRL_XON_CHAR

Resource Classes
Serial INSTR

Attribute Information

Description
VI_ATTR_ASRL_XON_CHAR specifies the value of the XON character used for XON/XOFF
flow control (both directions). If XON/XOFF flow control (software handshaking) is not
being used, the value of this attribute is ignored.

Related Items
See the VI_ATTR_ASRL_XOFF_CHAR and VI_ATTR_ASRL_FLOW_CNTRL descriptions in this
chapter. Also see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt8 0 to FFh <Control-Q> (11h)

Chapter 3 Attributes

© National Instruments Corporation 3-25 NI-VISA Programmer Reference Manual

VI_ATTR_BUFFER

Resource Classes
VI_EVENT_IO_COMPLETION

Attribute Information

Description
VI_ATTR_BUFFER contains the address of a buffer that was used in an asynchronous
operation.

Related Items
See the VI_ATTR_STATUS, VI_ATTR_JOB_ID, and VI_ATTR_RET_COUNT descriptions
in this chapter. See the VI_EVENT_IO_COMPLETION event description in Chapter 4, Events.

Access
Privilege Data Type Range Default

Read Only ViBuf N/A N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-26 ni.com

VI_ATTR_CMDR_LA

Resource Classes
GPIB-VXI INSTR, VXI INSTR, VXI SERVANT

Attribute Information

Description
VI_ATTR_CMDR_LA is the unique logical address of the commander of the VXI device used
by the given session.

Related Items
See the INSTR Resource and SERVANT Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViInt16 0 to 255
VI_UNKNOWN_LA (–1)

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-27 NI-VISA Programmer Reference Manual

VI_ATTR_DEST_ACCESS_PRIV

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, VXI INSTR, VXI MEMACC

Attribute Information

Description
VI_ATTR_DEST_ACCESS_PRIV specifies the address modifier to be used in high-level access
operations, such as viOutXX() and viMoveOutXX(), when writing to the destination.

Related Items
See the VI_ATTR_DEST_BYTE_ORDER, VI_ATTR_DEST_INCREMENT,
VI_ATTR_SRC_ACCESS_PRIV, and VI_ATTR_WIN_ACCESS_PRIV descriptions in this
chapter. Also see the INSTR Resource and MEMACC Resource descriptions in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt16 VI_DATA_PRIV (0)

VI_DATA_NPRIV (1)

VI_PROG_PRIV (2)

VI_PROG_NPRIV (3)

VI_BLCK_PRIV (4)

VI_BLCK_NPRIV (5)

VI_D64_PRIV (6)

VI_D64_NPRIV (7)

VI_DATA_PRIV

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-28 ni.com

VI_ATTR_DEST_BYTE_ORDER

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, VXI INSTR, VXI MEMACC

Attribute Information

Description
VI_ATTR_DEST_BYTE_ORDER specifies the byte order to be used in high-level access
operations, such as viOutXX() and viMoveOutXX(), when writing to the destination.

Related Items
See the VI_ATTR_DEST_ACCESS_PRIV, VI_ATTR_DEST_INCREMENT,
VI_ATTR_SRC_BYTE_ORDER, and VI_ATTR_WIN_BYTE_ORDER descriptions in this chapter.
Also see the INSTR Resource and MEMACC Resource descriptions in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt16 VI_BIG_ENDIAN (0)

VI_LITTLE_ENDIAN (1)

VI_BIG_ENDIAN

Chapter 3 Attributes

© National Instruments Corporation 3-29 NI-VISA Programmer Reference Manual

VI_ATTR_DEST_INCREMENT

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Attribute Information

Description
VI_ATTR_DEST_INCREMENT is used in the viMoveOutXX() operations to specify by how
many elements the destination offset is to be incremented after every transfer. The default
value of this attribute is 1 (that is, the destination address will be incremented by 1 after
each transfer), and the viMoveOutXX() operations move into consecutive elements. If this
attribute is set to 0, the viMoveOutXX() operations will always write to the same element,
essentially treating the destination as a FIFO register.

Related Items
See the VI_ATTR_DEST_ACCESS_PRIV, VI_ATTR_DEST_BYTE_ORDER, and
VI_ATTR_SRC_INCREMENT descriptions in this chapter. Also see the INSTR Resource
and MEMACC Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViInt32 0 to 1 1

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-30 ni.com

VI_ATTR_DEV_STATUS_BYTE

Resource Classes
GPIB INTFC, GPIB SERVANT, VXI SERVANT

Attribute Information

Description
This attribute specifies the 488-style status byte of the local controller or device associated
with this session.

If this attribute is written and bit 6 (40h) is set, this device or controller will assert a service
request (SRQ) if it is defined for this interface.

Related Items
See INTFC Resource and SERVANT Resource in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Global

ViUInt8 0 to FFh N/A

Chapter 3 Attributes

© National Instruments Corporation 3-31 NI-VISA Programmer Reference Manual

VI_ATTR_DMA_ALLOW_EN

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
PXI INSTR, Serial INSTR, TCPIP INSTR, VXI INSTR, VXI MEMACC, VXI SERVANT

Attribute Information

Description
This attribute specifies whether I/O accesses should use DMA (VI_TRUE) or Programmed
I/O (VI_FALSE). In some implementations, this attribute may have global effects even
though it is documented to be a local attribute. Since this affects performance and not
functionality, that behavior is acceptable.

Related Items
See MEMACC Resource, INTFC Resource, SERVANT Resource, and INSTR Resource in
Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViBoolean VI_TRUE (1)

VI_FALSE (0)

N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-32 ni.com

VI_ATTR_EVENT_TYPE

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_EVENT_TYPE is the unique logical identifier for the event type of the specified
event.

Related Items
Refer to Chapter 4, Events, for a list of events.

Access
Privilege Data Type Range Default

Read Only ViEventType 0h to FFFFFFFFh N/A

Chapter 3 Attributes

© National Instruments Corporation 3-33 NI-VISA Programmer Reference Manual

VI_ATTR_FDC_CHNL

Resource Classes
VXI INSTR

Attribute Information

Description
VI_ATTR_FDC_CHNL determines which Fast Data Channel (FDC) will be used to transfer the
buffer.

Related Items
See the VI_ATTR_FDC_MODE and VI_ATTR_FDC_USE_PAIR descriptions in this chapter.
Also see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt16 0 to 7 N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-34 ni.com

VI_ATTR_FDC_MODE

Resource Classes
VXI INSTR

Attribute Information

Description
VI_ATTR_FDC_MODE specifies which Fast Data Channel (FDC) mode to use (either normal
or stream mode).

Related Items
See the VI_ATTR_FDC_CHNL and VI_ATTR_FDC_USE_PAIR descriptions in this chapter.
Also see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt16 VI_FDC_NORMAL (1)

VI_FDC_STREAM (2)

VI_FDC_NORMAL

Chapter 3 Attributes

© National Instruments Corporation 3-35 NI-VISA Programmer Reference Manual

VI_ATTR_FDC_USE_PAIR

Resource Classes
VXI INSTR

Attribute Information

Description
Setting VI_ATTR_FDC_USE_PAIR to VI_TRUE specifies to use a channel pair for transferring
data. Otherwise, only one channel will be used.

Related Items
See the VI_ATTR_FDC_CHNL and VI_ATTR_FDC_MODE descriptions in this chapter. Also see
the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViBoolean VI_TRUE (1)

VI_FALSE (0)

VI_FALSE

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-36 ni.com

VI_ATTR_FILE_APPEND_EN

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Attribute Information

Description
This attribute specifies whether viReadToFile() will overwrite (truncate) or append when
opening a file.

Related Items
See the viReadToFile() description in Chapter 5, Operations. Also see the INSTR
Resource, INTFC Resource, SERVANT Resource, and SOCKET Resource descriptions in
Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViBoolean VI_TRUE (1)

VI_FALSE (0)

VI_FALSE

Chapter 3 Attributes

© National Instruments Corporation 3-37 NI-VISA Programmer Reference Manual

VI_ATTR_GPIB_ADDR_STATE

Resource Classes
GPIB INTFC, GPIB SERVANT

Attribute Information

Description
This attribute shows whether the specified GPIB interface is currently addressed to talk or
listen, or is not addressed.

Related Items
Also see the INTFC Resource and SERVANT Resource descriptions in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViInt16 VI_GPIB_UNADDRESSED (0)

VI_GPIB_TALKER (1)

VI_GPIB_LISTENER (2)

N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-38 ni.com

VI_ATTR_GPIB_ATN_STATE

Resource Classes
GPIB INTFC

Attribute Information

Description
This attribute shows the current state of the GPIB ATN (ATtentioN) interface line.

Related Items
See the VI_ATTR_GPIB_REN_STATE, VI_ATTR_GPIB_NDAC_STATE and
VI_ATTR_GPIB_SRQ_STATE descriptions in this chapter, and the viGpibControlATN
description in Chapter 5, Operations. Also see the INTFC Resource description in
Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViInt16 VI_STATE_ASSERTED (1)

VI_STATE_UNASSERTED (0)

VI_STATE_UNKNOWN (–1)

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-39 NI-VISA Programmer Reference Manual

VI_ATTR_GPIB_CIC_STATE

Resource Classes
GPIB INTFC

Attribute Information

Description
This attribute shows whether the specified GPIB interface is currently CIC (Controller In
Charge).

Related Items
See the VI_ATTR_GPIB_SYS_CNTRL_STATE description in this chapter. Also see the INTFC
Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViBoolean VI_TRUE (1)

VI_FALSE (0)

N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-40 ni.com

VI_ATTR_GPIB_HS488_CBL_LEN

Resource Classes
GPIB INTFC

Attribute Information

Description
This attribute specifies the total number of meters of GPIB cable used in the specified GPIB
interface.

Related Items

See the VI_ATTR_IO_PROT description in this chapter. Also see the INTFC Resource
description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Global

ViInt16 VI_GPIB_HS488_NIMPL (-1)

VI_GPIB_HS488_DISABLED (0)

1–15

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-41 NI-VISA Programmer Reference Manual

VI_ATTR_GPIB_NDAC_STATE

Resource Classes
GPIB INTFC

Attribute Information

Description
This attribute shows the current state of the GPIB NDAC (Not Data Accepted) interface line.

Related Items
See the VI_ATTR_GPIB_REN_STATE, VI_ATTR_GPIB_ATN_STATE and
VI_ATTR_GPIB_SRQ_STATE descriptions in this chapter. Also see the INTFC Resource
description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViInt16 VI_STATE_ASSERTED (1)

VI_STATE_UNASSERTED (0)

VI_STATE_UNKNOWN (–1)

N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-42 ni.com

VI_ATTR_GPIB_PRIMARY_ADDR

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE

Attribute Information

Description
VI_ATTR_GPIB_PRIMARY_ADDR specifies the primary address of the GPIB device used by
the given session. For the GPIB INTFC and GPIB SERVANT Resources, this attribute is
Read/Write.

Related Items
See the VI_ATTR_GPIB_SECONDARY_ADDR description in this chapter. Also see the INSTR
Resource, INTFC Resource, SERVANT Resource, BACKPLANE Resource, and MEMACC
Resource descriptions in Appendix B, Resources.

Access Privilege Data Type Range Default

INSTR, MEMACC,
BACKPLANE:

Read Only
Global

INTFC, SERVANT:
Read/Write

Global

ViUInt16 0 to 30 N/A

Chapter 3 Attributes

© National Instruments Corporation 3-43 NI-VISA Programmer Reference Manual

VI_ATTR_GPIB_READDR_EN

Resource Classes
GPIB INSTR, GPIB-VXI INSTR

Attribute Information

Description
VI_ATTR_GPIB_READDR_EN specifies whether to use repeat addressing before each read or
write operation.

Related Items
See the VI_ATTR_GPIB_UNADDR_EN description in this chapter. Also see the INSTR
Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViBoolean VI_TRUE (1)

VI_FALSE (0)

VI_TRUE

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-44 ni.com

VI_ATTR_GPIB_RECV_CIC_STATE

Resource Classes
VI_EVENT_GPIB_CIC

Attribute Information

Description
This attribute specifies whether the local controller has gained or lost CIC status.

Related Items
See the VI_ATTR_GPIB_ATN_STATE description in this chapter. See the
VI_EVENT_GPIB_CIC description in Chapter 4, Events. Also see the INTFC Resource
description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only ViBoolean VI_TRUE (1)

VI_FALSE (0)

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-45 NI-VISA Programmer Reference Manual

VI_ATTR_GPIB_REN_STATE

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR

Attribute Information

Description
VI_ATTR_GPIB_REN_STATE returns the current state of the GPIB REN (Remote ENable)
interface line.

Related Items
See the VI_ATTR_GPIB_ATN_STATE, VI_ATTR_GPIB_NDAC_STATE, and
VI_ATTR_GPIB_SRQ_STATE descriptions in this chapter, and the viGpibControlREN
description in Chapter 5, Operations. Also see the INSTR Resource, INTFC Resource, and
SERVANT Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViBoolean VI_TRUE (1)

VI_FALSE (0)

N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-46 ni.com

VI_ATTR_GPIB_SECONDARY_ADDR

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE

Attribute Information

Description
VI_ATTR_GPIB_SECONDARY_ADDR specifies the secondary address of the GPIB device used
by the given session. For the GPIB INTFC and GPIB SERVANT Resources, this attribute is
Read/Write.

Related Items
See the VI_ATTR_GPIB_PRIMARY_ADDR description in this chapter. Also see the INSTR
Resource, INTFC Resource, MEMACC Resource, BACKPLANE Resource, and SERVANT
Resource descriptions in Appendix B, Resources.

Access Privilege Data Type Range Default

INSTR, MEMACC,
BACKPLANE:

Read Only
Global

INTFC, SERVANT:
Read/Write

Global

ViUInt16 0 to 30,
VI_NO_SEC_ADDR (FFFFh)

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-47 NI-VISA Programmer Reference Manual

VI_ATTR_GPIB_SRQ_STATE

Resource Classes
GPIB INTFC

Attribute Information

Description
This attribute shows the current state of the GPIB SRQ (Service ReQuest) interface line.

Related Items
See the VI_ATTR_GPIB_REN_STATE, VI_ATTR_GPIB_NDAC_STATE, and
VI_ATTR_GPIB_ATN_STATE descriptions in this chapter. Also see the INTFC Resource
description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViInt16 VI_STATE_ASSERTED (1)

VI_STATE_UNASSERTED (0)

VI_STATE_UNKNOWN (–1)

N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-48 ni.com

VI_ATTR_GPIB_SYS_CNTRL_STATE

Resource Classes
GPIB INTFC

Attribute Information

Description
This attribute shows whether the specified GPIB interface is currently the system controller.
In some implementations, this attribute may be modified only through a configuration utility.
On these systems this attribute is Read Only (RO).

Related Items
See the VI_ATTR_GPIB_CIC_STATE description in this chapter. Also see the INTFC
Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViBoolean VI_TRUE (1)

VI_FALSE (0)

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-49 NI-VISA Programmer Reference Manual

VI_ATTR_GPIB_UNADDR_EN

Resource Classes
GPIB INSTR, GPIB-VXI INSTR

Attribute Information

Description
VI_ATTR_GPIB_UNADDR_EN specifies whether to unaddress the device (UNT and UNL)
after each read or write operation.

Related Items
See the VI_ATTR_GPIB_READDR_EN description in this chapter. Also see the INSTR
Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViBoolean VI_TRUE (1)

VI_FALSE (0)

VI_FALSE

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-50 ni.com

VI_ATTR_IMMEDIATE_SERV

Resource Classes
GPIB-VXI INSTR, VXI INSTR

Attribute Information

Description
VI_ATTR_IMMEDIATE_SERV specifies whether the device associated with this session is an
immediate servant of the controller running VISA.

Related Items
See the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViBoolean VI_TRUE (1)

VI_FALSE (0)

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-51 NI-VISA Programmer Reference Manual

VI_ATTR_INTF_INST_NAME

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_INTF_INST_NAME specifies human-readable text that describes the given
interface.

Related Items
See the VI_ATTR_INTF_NUM and VI_ATTR_INTF_TYPE descriptions in this chapter. Also
see the INSTR Resource, MEMACC Resource, INTFC Resource, BACKPLANE Resource,
SERVANT Resource, and SOCKET Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViString N/A N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-52 ni.com

VI_ATTR_INTF_NUM

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_INTF_NUM specifies the board number for the given interface.

Related Items
See the VI_ATTR_INTF_TYPE description in this chapter. Also see the INSTR Resource,
MEMACC Resource, INTFC Resource, BACKPLANE Resource, SERVANT Resource, and
SOCKET Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 0h to FFFFh 0

Chapter 3 Attributes

© National Instruments Corporation 3-53 NI-VISA Programmer Reference Manual

VI_ATTR_INTF_PARENT_NUM

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, GPIB-VXI BACKPLANE

Attribute Information

Description
VI_ATTR_INTF_PARENT_NUM specifies the board number of the GPIB board to which the
GPIB-VXI is attached.

Related Items
See the VI_ATTR_INTF_NUM and VI_ATTR_INTF_TYPE descriptions in this chapter. Also
see the INTFC Resource, MEMACC Resource, and BACKPLANE Resource descriptions in
Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 0h to FFFFh 0

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-54 ni.com

VI_ATTR_INTF_TYPE

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_INTF_TYPE specifies the interface type of the given session.

Related Items
See the VI_ATTR_INTF_NUM description in this chapter. Also see the INSTR Resource,
MEMACC Resource, INTFC Resource, BACKPLANE Resource, SERVANT Resource, and
SOCKET Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 VI_INTF_GPIB (1)

VI_INTF_VXI (2)

VI_INTF_GPIB_VXI (3)

VI_INTF_ASRL (4)

VI_INTF_PXI (5)

VI_INTF_TCPIP (6)

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-55 NI-VISA Programmer Reference Manual

VI_ATTR_INTR_STATUS_ID

Resource Classes
VI_EVENT_VXI_VME_INTR

Attribute Information

Description
VI_ATTR_INTR_STATUS_ID specifies the 32-bit status/ID retrieved during the IACK cycle.

Related Items
See the VI_ATTR_EVENT_TYPE and VI_ATTR_RECV_INTR_LEVEL descriptions in this
chapter. See the VI_EVENT_VXI_VME_INTR event description in Chapter 4, Events. Also
see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt32 0 to FFFFFFFFh N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-56 ni.com

VI_ATTR_IO_PROT

Resource Classes
GPIB INTFC, GPIB INSTR, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Attribute Information

Description
VI_ATTR_IO_PROT specifies which protocol to use. In VXI systems, for example, you can
choose between normal word serial or Fast Data Channel (FDC). In GPIB, you can choose
between normal and high-speed (HS488) data transfers. For a session to a Serial device or
Ethernet socket, you can choose between normal and 488-style transfers. In previous versions
of VISA, VI_PROT_4882_STRS was known as VI_ASRL488.

Related Items
See the VI_ATTR_FDC_CHNL, VI_ATTR_FDC_MODE, VI_ATTR_GPIB_HS488_CBL_LEN,
and VI_ATTR_FDC_USE_PAIR descriptions in this chapter. Also see the INSTR Resource,
SOCKET Resource, SERVANT Resource, and INTFC Resource descriptions in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt16 GPIB:
VI_NORMAL (1)

VI_HS488 (3)

VI_NORMAL

VXI:
VI_NORMAL (1)

VI_FDC (2)

VI_NORMAL

GPIB-VXI:
VI_NORMAL (1)

VI_NORMAL

Serial, TCPIP:
VI_NORMAL (1)

VI_PROT_4882_STRS (4)

VI_NORMAL

Chapter 3 Attributes

© National Instruments Corporation 3-57 NI-VISA Programmer Reference Manual

VI_ATTR_JOB_ID

Resource Classes
VI_EVENT_IO_COMPLETION

Attribute Information

Description
VI_ATTR_JOB_ID contains the job ID of the asynchronous operation that has completed.

Related Items
See the VI_ATTR_STATUS, VI_ATTR_BUFFER, and VI_ATTR_RET_COUNT descriptions
in this chapter. See the VI_EVENT_IO_COMPLETION event description in Chapter 4, Events.
Also see Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only ViJobId N/A N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-58 ni.com

VI_ATTR_MAINFRAME_LA

Resource Classes
GPIB-VXI INSTR, GPIB-VXI BACKPLANE, VXI INSTR, VXI BACKPLANE

Attribute Information

Description
VI_ATTR_MAINFRAME_LA specifies the lowest logical address in the mainframe. If the
logical address is not known, VI_UNKNOWN_LA is returned.

Related Items
See the INSTR Resource and BACKPLANE Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViInt16 0 to 255
VI_UNKNOWN_LA (–1)

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-59 NI-VISA Programmer Reference Manual

VI_ATTR_MANF_ID

Resource Classes
GPIB-VXI INSTR, PXI INSTR, VXI INSTR

Attribute Information

Description
VI_ATTR_MANF_ID is the manufacturer identification number of the device.

Related Items
See the VI_ATTR_MODEL_CODE, VI_ATTR_MANF_NAME, and VI_ATTR_PXI_SUB_MANF_ID
descriptions in this chapter. Also see the INSTR Resource description in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 0h to FFFh N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-60 ni.com

VI_ATTR_MANF_NAME

Resource Classes
GPIB-VXI INSTR, PXI INSTR, VXI INSTR

Attribute Information

Description
This string attribute is the manufacturer’s name. The value of this attribute should be used for
display purposes only and not for programmatic decisions, as the value can be different
between VISA implementations and/or revisions.

Related Items
See the VI_ATTR_MANF_ID and VI_ATTR_MODEL_NAME descriptions in this chapter. Also
see the INSTR Resource description from Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViString N/A N/A

Chapter 3 Attributes

© National Instruments Corporation 3-61 NI-VISA Programmer Reference Manual

VI_ATTR_MAX_QUEUE_LENGTH

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_MAX_QUEUE_LENGTH specifies the maximum number of events that can be queued
at any time on the given session. Events that occur after the queue has become full will be
discarded.

VI_ATTR_MAX_QUEUE_LENGTH is a Read/Write attribute until the first time
viEnableEvent() is called on a session. Thereafter, this attribute is Read Only.

Related Items
See the viEnableEvent() and viWaitOnEvent() descriptions in Chapter 5, Operations.
Also see the VISA Resource Template description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt32 1h to FFFFFFFFh 50

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-62 ni.com

VI_ATTR_MEM_BASE

Resource Classes
GPIB-VXI INSTR, VXI INSTR

Attribute Information

Description
VI_ATTR_MEM_BASE specifies the base address of the device in VXIbus memory address
space. This base address is applicable to A24 or A32 address space. If the value of
VI_ATTR_MEM_SPACE is VI_A16_SPACE, the value of this attribute is meaningless for the
given VXI device.

Related Items
See the VI_ATTR_MEM_SIZE and VI_ATTR_MEM_SPACE descriptions in this chapter.
Also see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViBusAddress 0h to FFFFFFFFh N/A

Chapter 3 Attributes

© National Instruments Corporation 3-63 NI-VISA Programmer Reference Manual

VI_ATTR_MEM_SIZE

Resource Classes
GPIB-VXI INSTR, VXI INSTR

Attribute Information

Description
VI_ATTR_MEM_SIZE specifies the size of memory requested by the device in VXIbus address
space. If the value of VI_ATTR_MEM_SPACE is VI_A16_SPACE, the value of this attribute is
meaningless for the given VXI device.

Related Items
See the VI_ATTR_MEM_BASE and VI_ATTR_MEM_SPACE descriptions in this chapter.
Also see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViBusSize 0h to FFFFFFFFh N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-64 ni.com

VI_ATTR_MEM_SPACE

Resource Classes
GPIB-VXI INSTR, VXI INSTR

Attribute Information

Description
VI_ATTR_MEM_SPACE specifies the VXIbus address space used by the device. The three
types are A16, A24, or A32 memory address space.

A VXI device with memory in A24 or A32 space also has registers accessible in the
configuration section of A16 space. A VME device with memory in multiple address spaces
requires one VISA resource for each address space used.

Related Items
See the VI_ATTR_MEM_BASE and VI_ATTR_MEM_SIZE descriptions in this chapter. Also
see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 VI_A16_SPACE (1)

VI_A24_SPACE (2)

VI_A32_SPACE (3)

VI_A16_SPACE

Chapter 3 Attributes

© National Instruments Corporation 3-65 NI-VISA Programmer Reference Manual

VI_ATTR_MODEL_CODE

Resource Classes
GPIB-VXI INSTR, PXI INSTR, VXI INSTR

Attribute Information

Description
VI_ATTR_MODEL_CODE specifies the model code for the device.

Related Items
See the VI_ATTR_PXI_SUB_MODEL_CODE, VI_ATTR_MANF_ID, and
VI_ATTR_MODEL_NAME descriptions in this chapter. Also see the INSTR Resource
description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 0h to FFFFh N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-66 ni.com

VI_ATTR_MODEL_NAME

Resource Classes
GPIB-VXI INSTR, PXI INSTR, VXI INSTR

Attribute Information

Description
This string attribute is the model name of the device. The value of this attribute should be used
for display purposes only and not for programmatic decisions, as the value can be different
between VISA implementations and/or revisions.

Related Items
See the VI_ATTR_MODEL_CODE, VI_ATTR_PXI_SUB_MODEL_CODE, and
VI_ATTR_MANF_NAME descriptions in this chapter. Also see the INSTR Resource description
in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViString N/A N/A

Chapter 3 Attributes

© National Instruments Corporation 3-67 NI-VISA Programmer Reference Manual

VI_ATTR_OPER_NAME

Resource Classes
VI_EVENT_IO_COMPLETION, VI_EVENT_EXCEPTION

Attribute Information

Description
VI_ATTR_OPER_NAME contains the name of the operation generating this event.

Related Items
See the VI_ATTR_STATUS and VI_ATTR_EVENT_TYPE descriptions in this chapter, and
see the VI_EVENT_EXCEPTION and VI_EVENT_IO_COMPLETION event descriptions in
Chapter 4, Events. Also see Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only ViString N/A N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-68 ni.com

VI_ATTR_PXI_DEV_NUM

Resource Classes
PXI INSTR

Attribute Information

Description
This is the PXI device number.

Related Items
See the VI_ATTR_PXI_FUNC_NUM description in this chapter. Also see the INSTR Resource
description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 0 to 31 N/A

Chapter 3 Attributes

© National Instruments Corporation 3-69 NI-VISA Programmer Reference Manual

VI_ATTR_PXI_FUNC_NUM

Resource Classes
PXI INSTR

Attribute Information

Description
This is the PXI function number. All devices have a function 0. Multifunction devices will
also support other function numbers.

Related Items
See the VI_ATTR_PXI_DEV_NUM description in this chapter. Also see the INSTR Resource
description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 0 to 7 0

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-70 ni.com

VI_ATTR_PXI_MEM_BASE_BAR0/VI_ATTR_PXI_MEM_BASE_BAR1/
VI_ATTR_PXI_MEM_BASE_BAR2/VI_ATTR_PXI_MEM_BASE_BAR3/
VI_ATTR_PXI_MEM_BASE_BAR4/VI_ATTR_PXI_MEM_BASE_BAR5

Resource Classes
PXI INSTR

Attribute Information

Description
PXI memory base address assigned to the specified BAR. If the value of the corresponding
VI_ATTR_PXI_MEM_TYPE_BARx is VI_PXI_ADDR_NONE, the value of this attribute is
meaningless for the given PXI device.

Related Items
See the VI_ATTR_PXI_MEM_TYPE_BAR0/VI_ATTR_PXI_MEM_TYPE_BAR1/
VI_ATTR_PXI_MEM_TYPE_BAR2/VI_ATTR_PXI_MEM_TYPE_BAR3/

VI_ATTR_PXI_MEM_TYPE_BAR4/VI_ATTR_PXI_MEM_TYPE_BAR5 and
VI_ATTR_PXI_MEM_SIZE_BAR0/VI_ATTR_PXI_MEM_SIZE_BAR1/

VI_ATTR_PXI_MEM_SIZE_BAR2/VI_ATTR_PXI_MEM_SIZE_BAR3/

VI_ATTR_PXI_MEM_SIZE_BAR4/VI_ATTR_PXI_MEM_SIZE_BAR5 descriptions in this
chapter. Also see the INSTR Resource in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt32 0 to FFFFFFFFh N/A

Chapter 3 Attributes

© National Instruments Corporation 3-71 NI-VISA Programmer Reference Manual

VI_ATTR_PXI_MEM_SIZE_BAR0/VI_ATTR_PXI_MEM_SIZE_BAR1/
VI_ATTR_PXI_MEM_SIZE_BAR2/VI_ATTR_PXI_MEM_SIZE_BAR3/
VI_ATTR_PXI_MEM_SIZE_BAR4/VI_ATTR_PXI_MEM_SIZE_BAR5

Resource Classes
PXI INSTR

Attribute Information

Description
Memory size used by the device in the specified BAR. If the value of the corresponding
VI_ATTR_PXI_MEM_TYPE_BARx is VI_PXI_ADDR_NONE, the value of this attribute is
meaningless for the given PXI device.

Related Items
See the VI_ATTR_PXI_MEM_TYPE_BAR0/VI_ATTR_PXI_MEM_TYPE_BAR1/
VI_ATTR_PXI_MEM_TYPE_BAR2/VI_ATTR_PXI_MEM_TYPE_BAR3/

VI_ATTR_PXI_MEM_TYPE_BAR4/VI_ATTR_PXI_MEM_TYPE_BAR5 and
VI_ATTR_PXI_MEM_BASE_BAR0/VI_ATTR_PXI_MEM_BASE_BAR1/

VI_ATTR_PXI_MEM_BASE_BAR2/VI_ATTR_PXI_MEM_BASE_BAR3/

VI_ATTR_PXI_MEM_BASE_BAR4/VI_ATTR_PXI_MEM_BASE_BAR5 descriptions in this
chapter. Also see the INSTR Resource in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt32 0 to FFFFFFFFh N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-72 ni.com

VI_ATTR_PXI_MEM_TYPE_BAR0/VI_ATTR_PXI_MEM_TYPE_BAR1/
VI_ATTR_PXI_MEM_TYPE_BAR2/VI_ATTR_PXI_MEM_TYPE_BAR3/
VI_ATTR_PXI_MEM_TYPE_BAR4/VI_ATTR_PXI_MEM_TYPE_BAR5

Resource Classes
PXI INSTR

Attribute Information

Description
Memory type used by the device in the specified BAR (if applicable).

Related Items
See the VI_ATTR_PXI_MEM_SIZE_BAR0/VI_ATTR_PXI_MEM_SIZE_BAR1/
VI_ATTR_PXI_MEM_SIZE_BAR2/VI_ATTR_PXI_MEM_SIZE_BAR3/

VI_ATTR_PXI_MEM_SIZE_BAR4/VI_ATTR_PXI_MEM_SIZE_BAR5 and
VI_ATTR_PXI_MEM_BASE_BAR0/VI_ATTR_PXI_MEM_BASE_BAR1/

VI_ATTR_PXI_MEM_BASE_BAR2/VI_ATTR_PXI_MEM_BASE_BAR3/

VI_ATTR_PXI_MEM_BASE_BAR4/VI_ATTR_PXI_MEM_BASE_BAR5 descriptions in this
chapter. Also see the INSTR Resource in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 VI_PXI_ADDR_NONE (0)

VI_PXI_ADDR_MEM (1)

VI_PXI_ADDR_IO (2)

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-73 NI-VISA Programmer Reference Manual

VI_ATTR_PXI_SUB_MANF_ID

Resource Classes
PXI INSTR

Attribute Information

Description
This attribute specifies the PXI device’s subsystem manufacturer ID (if applicable).

Related Items
See the VI_ATTR_MANF_ID, VI_ATTR_MANF_NAME, VI_ATTR_MODEL_CODE, and
VI_ATTR_PXI_SUB_MODEL_CODE descriptions in this chapter. Also see the INSTR Resource
in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 0 to FFFFh N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-74 ni.com

VI_ATTR_PXI_SUB_MODEL_CODE

Resource Classes
PXI INSTR

Attribute Information

Description
This attribute specifies the PXI device’s subsystem model code (if applicable).

Related Items
See the VI_ATTR_MODEL_NAME, VI_ATTR_MODEL_CODE, and
VI_ATTR_PXI_SUB_MANF_ID descriptions in this chapter. Also see the INSTR Resource
description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 0 to FFFFh N/A

Chapter 3 Attributes

© National Instruments Corporation 3-75 NI-VISA Programmer Reference Manual

VI_ATTR_RD_BUF_OPER_MODE

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIC SOCKET, VXI INSTR, VXI SERVANT

Attribute Information

Description
VI_ATTR_RD_BUF_OPER_MODE specifies the operational mode of the formatted I/O read
buffer. When the operational mode is set to VI_FLUSH_DISABLE (default), the buffer is
flushed only on explicit calls to viFlush(). If the operational mode is set to
VI_FLUSH_ON_ACCESS, the write buffer is flushed every time a viScanf() (or related)
operation completes.

Related Items
See the VI_ATTR_WR_BUF_OPER_MODE description in this chapter. See the viFlush() and
viScanf() descriptions in Chapter 5, Operations. Also see the INSTR Resource, INTFC
Resource, SOCKET Resource, and SERVANT Resource descriptions in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt16 VI_FLUSH_ON_ACCESS (1)

VI_FLUSH_DISABLE (3)

VI_FLUSH_DISABLE

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-76 ni.com

VI_ATTR_RD_BUF_SIZE

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIC SOCKET, VXI INSTR, VXI SERVANT

Attribute Information

Description
This is the current size of the formatted I/O input buffer for this session.

Related Items
See the VI_ATTR_RD_BUF_OPER_MODE and VI_ATTR_WR_BUF_SIZE descriptions in this
chapter. Also see the viSetBuf description in Chapter 5, Operations.

Access
Privilege Data Type Range Default

Read Only
Local

ViUInt32 N/A N/A

Chapter 3 Attributes

© National Instruments Corporation 3-77 NI-VISA Programmer Reference Manual

VI_ATTR_RECV_INTR_LEVEL

Resource Classes
VI_EVENT_VXI_VME_INTR

Attribute Information

Description
VI_ATTR_RECV_INTR_LEVEL is the VXI interrupt level on which the interrupt was received.

Related Items
See the VI_ATTR_EVENT_TYPE and VI_ATTR_INTR_STATUS_ID descriptions in this
chapter and see the VI_EVENT_VXI_VME_INTR event description in Chapter 4, Events.
Also see the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only ViInt16 1 to 7;
VI_UNKNOWN_LEVEL (–1)

N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-78 ni.com

VI_ATTR_RECV_TRIG_ID

Resource Classes
VI_EVENT_TRIG

Attribute Information

Description
VI_ATTR_RECV_TRIG_ID identifies the triggering mechanism on which the specified trigger
event was received.

Related Items
See the VI_EVENT_TRIG event description in Chapter 4, Events. Also see the BACKPLANE
Resource, INSTR Resource, INTFC Resource, and SERVANT Resource descriptions in
Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only ViInt16 VI_TRIG_SW (-1)

VI_TRIG_TTL0 (0) to
VI_TRIG_TTL7 (7);

VI_TRIG_ECL0 (8) to
VI_TRIG_ECL1 (9)

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-79 NI-VISA Programmer Reference Manual

VI_ATTR_RET_COUNT

Resource Classes
VI_EVENT_IO_COMPLETION

Attribute Information

Description
VI_ATTR_RET_COUNT contains the actual number of elements that were asynchronously
transferred.

Related Items
See the VI_ATTR_STATUS, VI_ATTR_JOB_ID, and VI_ATTR_BUFFER descriptions in
this chapter. See the VI_EVENT_IO_COMPLETION event description in Chapter 4, Events.
Also see Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only ViUInt32 0h to FFFFFFFFh N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-80 ni.com

VI_ATTR_RM_SESSION

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_RM_SESSION specifies the session of the Resource Manager that was used to open
this session.

Related Items
See the VISA Resource Template description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Local

ViSession N/A N/A

Chapter 3 Attributes

© National Instruments Corporation 3-81 NI-VISA Programmer Reference Manual

VI_ATTR_RSRC_CLASS

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by
the canonical resource name.

Related Items
See the VI_ATTR_RSRC_NAME description in this chapter. Also see the VISA Resource
Template description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViString N/A N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-82 ni.com

VI_ATTR_RSRC_IMPL_VERSION

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of
the different revisions or implementations of a resource. This attribute value is defined by the
individual manufacturer and increments with each new revision. The format of the value has
the upper 12 bits as the major number of the version, the next lower 12 bits as the minor
number of the version, and the lowest 8 bits as the sub-minor number of the version.

Related Items
See the VI_ATTR_RSRC_SPEC_VERSION description in this chapter. Also see the VISA
Resource Template description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViVersion 0h to FFFFFFFFh N/A

Chapter 3 Attributes

© National Instruments Corporation 3-83 NI-VISA Programmer Reference Manual

VI_ATTR_RSRC_LOCK_STATE

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The
resource can be unlocked, locked with an exclusive lock, or locked with a shared lock.

Related Items
See the VISA Resource Template description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViAccessMode VI_NO_LOCK (0)
VI_EXCLUSIVE_LOCK (1)
VI_SHARED_LOCK (2)

VI_NO_LOCK

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-84 ni.com

VI_ATTR_RSRC_MANF_ID

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_RSRC_MANF_ID is a value that corresponds to the VXI manufacturer ID of
the vendor that implemented the VISA library. This attribute is not related to the device
manufacturer attributes.

Related Items
See the VI_ATTR_RSRC_MANF_NAME description in this chapter. Also see the VISA Resource
Template description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 0h to 3FFFh N/A

Chapter 3 Attributes

© National Instruments Corporation 3-85 NI-VISA Programmer Reference Manual

VI_ATTR_RSRC_MANF_NAME

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of
the vendor that implemented the VISA library. This attribute is not related to the device
manufacturer attributes.

Related Items
See the VI_ATTR_RSRC_MANF_ID description in this chapter. Also see the VISA Resource
Template description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViString N/A N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-86 ni.com

VI_ATTR_RSRC_NAME

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_RSRC_NAME is the unique identifier for a resource compliant with the address
structure shown in the following table. Optional string segments are shown in square brackets.

Access Privilege Data Type Range Default

Read Only
Global

ViRsrc N/A N/A

Interface Syntax

GPIB INSTR GPIB[board]::primary address[::secondary
address][::INSTR]

GPIB INTFC GPIB[board]::INTFC

GPIB SERVANT GPIB[board]::SERVANT

GPIB-VXI INSTR GPIB-VXI[board]::VXI logical address[::INSTR]

GPIB-VXI
BACKPLANE

GPIB-VXI[board][::mainframe logical address]
::BACKPLANE

GPIB-VXI MEMACC GPIB-VXI[board]::MEMACC

PXI INSTR PXI[board]::device[::function][::INSTR]

Serial INSTR ASRL[board][::INSTR]

TCPIP INSTR TCPIP [board]::host address[::LAN device name]
[::INSTR]

TCPIP SOCKET TCPIP [board]::host address::port::SOCKET

VXI INSTR VXI[board]::VXI logical address[::INSTR]

VXI BACKPLANE VXI[board][::mainframe logical address]
::BACKPLANE

Chapter 3 Attributes

© National Instruments Corporation 3-87 NI-VISA Programmer Reference Manual

The following table shows examples of address strings as defined in the previous table.

Related Items
See the viFindRsrc(), viParseRsrc(), and viOpen() descriptions in Chapter 5,
Operations. Also see the VISA Resource Template description in Appendix B, Resources.

VXI MEMACC VXI[board]::MEMACC

VXI SERVANT VXI[board]::SERVANT

Address String Description

VXI0::1::INSTR A VXI device at logical address 1 in VXI interface VXI0.

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a GPIB-VXI controlled
system.

GPIB::1::0::INSTR A GPIB device at primary address 1 and secondary address 0 in
GPIB interface 0.

ASRL1::INSTR A serial device located on port 1.

VXI::MEMACC Board-level register access to the VXI interface.

GPIB-VXI1::MEMACC Board-level register access to GPIB-VXI interface number 1.

GPIB2::INTFC Interface or raw resource for GPIB interface 2.

VXI::1::BACKPLANE Mainframe resource for chassis 1 on the default VXI system,
which is interface 0.

GPIB-VXI2::BACKPLANE Mainframe resource for default chassis on GPIB-VXI
interface 2.

GPIB1::SERVANT Servant/device-side resource for GPIB interface 1.

VXI0::SERVANT Servant/device-side resource for VXI interface 0.

PXI::15::INSTR PXI device number 15 on bus 0.

TCPIP0::1.2.3.4::999
::SOCKET

Raw TCP/IP access to port 999 at the specified IP address.

TCPIP::dev@company.com
::INSTR

A TCP/IP device using VXI-11 located at the specified address.
This uses the default LAN Device Name of inst0.

Interface Syntax

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-88 ni.com

VI_ATTR_RSRC_SPEC_VERSION

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version
of the VISA specification to which the implementation is compliant. The format of the value
has the upper 12 bits as the major number of the version, the next lower 12 bits as the minor
number of the version, and the lowest 8 bits as the sub-minor number of the version. The
current VISA specification defines the value to be 00200200h.

Related Items
See the VI_ATTR_RSRC_IMPL_VERSION description in this chapter. Also see the VISA
Resource Template description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViVersion 0h to FFFFFFFFh 00200200h

Chapter 3 Attributes

© National Instruments Corporation 3-89 NI-VISA Programmer Reference Manual

VI_ATTR_SEND_END_EN

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Attribute Information

Description
VI_ATTR_SEND_END_EN specifies whether to assert END during the transfer of the last byte
of the buffer.

Related Items
See the viWrite() description in Chapter 5, Operations, and the INSTR Resource, INTFC
Resource, SOCKET Resource, and SERVANT Resource descriptions in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViBoolean VI_TRUE (1)
VI_FALSE (0)

VI_TRUE

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-90 ni.com

VI_ATTR_SIGP_STATUS_ID

Resource Classes
VI_EVENT_VXI_SIGP

Attribute Information

Description
VI_ATTR_SIGP_STATUS_ID is the 16-bit Status/ID value retrieved during the IACK cycle
or from the Signal register.

Related Items
See the VI_EVENT_VXI_SIGP event description in Chapter 4, Events. Also see the INSTR
Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only ViUInt16 0h to FFFFh N/A

Chapter 3 Attributes

© National Instruments Corporation 3-91 NI-VISA Programmer Reference Manual

VI_ATTR_SLOT

Resource Classes
GPIB-VXI INSTR, PXI INSTR, VXI INSTR

Attribute Information

Description
VI_ATTR_SLOT specifies the physical slot location of the VXIbus device. If the slot number
is not known, VI_UNKNOWN_SLOT is returned.

Related Items
See the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViInt16 0 to 12
VI_UNKNOWN_SLOT (–1)

N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-92 ni.com

VI_ATTR_SRC_ACCESS_PRIV

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, VXI INSTR, VXI MEMACC

Attribute Information

Description
VI_ATTR_SRC_ACCESS_PRIV specifies the address modifier to be used in high-level access
operations, such as viInXX() and viMoveInXX(), when reading from the source.

Related Items
See the VI_ATTR_DEST_ACCESS_PRIV, VI_ATTR_SRC_BYTE_ORDER,
VI_ATTR_SRC_INCREMENT, and VI_ATTR_WIN_ACCESS_PRIV descriptions in this chapter.
Also see the INSTR Resource and MEMACC Resource descriptions in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt16 VI_DATA_PRIV (0)
VI_DATA_NPRIV (1)
VI_PROG_PRIV (2)
VI_PROG_NPRIV (3)
VI_BLCK_PRIV (4)
VI_BLCK_NPRIV (5)
VI_D64_PRIV (6)
VI_D64_NPRIV (7)

VI_DATA_PRIV

Chapter 3 Attributes

© National Instruments Corporation 3-93 NI-VISA Programmer Reference Manual

VI_ATTR_SRC_BYTE_ORDER

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, VXI INSTR, VXI MEMACC

Attribute Information

Description
VI_ATTR_SRC_BYTE_ORDER specifies the byte order to be used in high-level access
operations, such as viInXX() and viMoveInXX(), when reading from the source.

Related Items
See the VI_ATTR_DEST_BYTE_ORDER, VI_ATTR_SRC_ACCESS_PRIV,
VI_ATTR_SRC_INCREMENT, and VI_ATTR_WIN_BYTE_ORDER descriptions in this chapter.
Also see the INSTR Resource and MEMACC Resource descriptions in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt16 VI_BIG_ENDIAN (0)
VI_LITTLE_ENDIAN (1)

VI_BIG_ENDIAN

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-94 ni.com

VI_ATTR_SRC_INCREMENT

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Attribute Information

Description
VI_ATTR_SRC_INCREMENT is used in the viMoveInXX() operations to specify by how
many elements the source offset is to be incremented after every transfer. The default value
of this attribute is 1 (that is, the source address will be incremented by 1 after each transfer),
and the viMoveOutXX() operations move from consecutive elements. If this attribute is set
to 0, the viMoveInXX() operations will always read from the same element, essentially
treating the source as a FIFO register.

Related Items
See the VI_ATTR_DEST_INCREMENT, VI_ATTR_SRC_ACCESS_PRIV, and
VI_ATTR_SRC_BYTE_ORDER descriptions in this chapter. Also see the INSTR Resource
and MEMACC Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViInt32 0 to 1 1

Chapter 3 Attributes

© National Instruments Corporation 3-95 NI-VISA Programmer Reference Manual

VI_ATTR_STATUS

Resource Classes
VI_EVENT_EXCEPTION, VI_EVENT_IO_COMPLETION

Attribute Information

Description
VI_ATTR_STATUS contains the return code of the operation generating this event.

Related Items
See the VI_ATTR_BUFFER, VI_ATTR_JOB_ID, VI_ATTR_OPER_NAME, and
VI_ATTR_RET_COUNT descriptions in this chapter, and see the VI_EVENT_EXCEPTION and
VI_EVENT_IO_COMPLETION event descriptions in Chapter 4, Events. Also see Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read Only ViStatus N/A N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-96 ni.com

VI_ATTR_SUPPRESS_END_EN

Resource Classes
Serial INSTR, VXI INSTR

Attribute Information

Description
VI_ATTR_SUPPRESS_END_EN specifies whether to suppress the END bit termination. If this
attribute is set to VI_TRUE, the END bit does not terminate read operations. If this attribute is
set to VI_FALSE, the END bit terminates read operations.

Related Items
See the viRead() description in Chapter 5, Operations, and the INSTR Resource description
in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViBoolean VI_TRUE (1)
VI_FALSE (0)

VI_FALSE

Chapter 3 Attributes

© National Instruments Corporation 3-97 NI-VISA Programmer Reference Manual

VI_ATTR_TCPIP_ADDR

Resource Classes
TCPIP INSTR, TCPIP SOCKET

Attribute Information

Description
This is the TCP/IP address of the device to which the session is connected. This string is
formatted in dot notation.

Related Items
See the VI_ATTR_TCPIP_HOSTNAME description in this chapter. Also see the INSTR
Resource and SOCKET Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViString N/A N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-98 ni.com

VI_ATTR_TCPIP_DEVICE_NAME

Resource Classes
TCPIP INSTR

Attribute Information

Description
This specifies the LAN device name used by the VXI-11 protocol during connection.

Related Items
See the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViString N/A N/A

Chapter 3 Attributes

© National Instruments Corporation 3-99 NI-VISA Programmer Reference Manual

VI_ATTR_TCPIP_HOSTNAME

Resource Classes
TCPIP INSTR, TCPIP SOCKET

Attribute Information

Description
This specifies the host name of the device. If no host name is available, this attribute returns
an empty string.

Related Items
See the INSTR Resource and SOCKET Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViString N/A N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-100 ni.com

VI_ATTR_TCPIP_KEEPALIVE

Resource Classes
TCPIP SOCKET

Attribute Information

Description
An application can request that a TCP/IP provider enable the use of “keep-alive” packets on
TCP connections by turning on this attribute. If a connection is dropped as a result of
“keep-alive” packets, the error code VI_ERROR_CONN_LOST is returned.

Related Items
See the VI_ATTR_TCPIP_NODELAY description in this chapter. Also see the SOCKET
Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViBoolean VI_TRUE (1)
VI_FALSE (0)

VI_FALSE

Chapter 3 Attributes

© National Instruments Corporation 3-101 NI-VISA Programmer Reference Manual

VI_ATTR_TCPIP_NODELAY

Resource Classes
TCPIP SOCKET

Attribute Information

Description
The Nagle algorithm is disabled when this attribute is enabled (and vice versa). The Nagle
algorithm improves network performance by buffering “send” data until a full-size packet can
be sent. This attribute is enabled by default in VISA to verify that synchronous writes get
flushed immediately.

Related Items
See the VI_ATTR_TCPIP_KEEPALIVE description in this chapter. Also see the SOCKET
Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViBoolean VI_TRUE (1)
VI_FALSE (0)

VI_TRUE

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-102 ni.com

VI_ATTR_TCPIP_PORT

Resource Classes
TCPIP SOCKET

Attribute Information

Description
This specifies the port number for a given TCP/IP address. For a TCPIP SOCKET Resource,
this is a required part of the address string.

Related Items
See the SOCKET Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 0 to FFFFh N/A

Chapter 3 Attributes

© National Instruments Corporation 3-103 NI-VISA Programmer Reference Manual

VI_ATTR_TERMCHAR

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Attribute Information

Description
VI_ATTR_TERMCHAR is the termination character. When the termination character is read and
VI_ATTR_TERMCHAR_EN is enabled during a read operation, the read operation terminates.

Related Items
See the VI_ATTR_TERMCHAR_EN description in this chapter. Also see the INSTR Resource,
INTFC Resource, SOCKET Resource, and SERVANT Resource descriptions in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt8 0 to FFh 0Ah
(linefeed)

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-104 ni.com

VI_ATTR_TERMCHAR_EN

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Attribute Information

Description
VI_ATTR_TERMCHAR_EN is a flag that determines whether the read operation should
terminate when a termination character is received. This attribute is valid for both raw I/O
(viRead) and formatted I/O (viScanf).

Related Items
See the VI_ATTR_TERMCHAR description in this chapter. Also see the INSTR Resource,
INTFC Resource, SOCKET Resource, and SERVANT Resource descriptions in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViBoolean VI_TRUE (1)
VI_FALSE (0)

VI_FALSE

Chapter 3 Attributes

© National Instruments Corporation 3-105 NI-VISA Programmer Reference Manual

VI_ATTR_TMO_VALUE

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_TMO_VALUE specifies the minimum timeout value to use (in milliseconds)
when accessing the device associated with the given session. A timeout value of
VI_TMO_IMMEDIATE means that operations should never wait for the device to respond.
A timeout value of VI_TMO_INFINITE disables the timeout mechanism.

Notice that the actual timeout value used by the driver may be higher than the requested one.
The actual timeout value is returned when this attribute is retrieved via viGetAttribute().

Related Items
See the INSTR Resource, MEMACC Resource, INTFC Resource, BACKPLANE Resource,
SERVANT Resource, and SOCKET Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt32 VI_TMO_IMMEDIATE (0);
1 to FFFFFFFEh;
VI_TMO_INFINITE

(FFFFFFFFh)

2000

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-106 ni.com

VI_ATTR_TRIG_ID

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI BACKPLANE, GPIB-VXI
INSTR, GPIB-VXI MEMACC, TCPIP INSTR, VXI BACKPLANE, VXI INSTR, VXI
MEMACC, VXI SERVANT

Attribute Information

Description
VI_ATTR_TRIG_ID is the identifier for the current triggering mechanism.

VI_ATTR_TRIG_ID is Read/Write when the corresponding session is not enabled to receive
trigger events. When the session is enabled to receive trigger events, the attribute
VI_ATTR_TRIG_ID is Read Only.

Related Items
See the VI_ATTR_RECV_TRIG_ID description in this chapter, and the viAssertTrigger()
description in Chapter 5, Operations. Also see the INTFC Resource, BACKPLANE Resource,
INSTR Resource, and SERVANT Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViInt16 GPIB, Serial, TCPIP:
VI_TRIG_SW (–1)

VI_TRIG_SW

VXI, GPIB-VXI:
VI_TRIG_SW (–1);
VI_TRIG_TTL0 (0) to
VI_TRIG_TTL7 (7);
VI_TRIG_ECL0 (8) to
VI_TRIG_ECL1 (9)

VI_TRIG_SW

Chapter 3 Attributes

© National Instruments Corporation 3-107 NI-VISA Programmer Reference Manual

VI_ATTR_USER_DATA

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, Serial INSTR, PXI INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI BACKPLANE, VXI SERVANT

Attribute Information

Description
VI_ATTR_USER_DATA is the data used privately by the application for a particular session.
This data is not used by VISA for any purposes. It is provided to the application for its
own use.

Related Items
See the VISA Resource Template description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViAddr 0h to FFFFFFFFh N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-108 ni.com

VI_ATTR_VXI_DEV_CLASS

Resource Classes
GPIB-VXI INSTR, VXI INSTR

Attribute Information

Description
This attribute represents the VXI-defined device class to which the resource belongs, either
message based (VI_VXI_CLASS_MESSAGE), register based (VI_VXI_CLASS_REGISTER),
extended (VI_VXI_CLASS_EXTENDED), or memory (VI_VXI_CLASS_MEMORY). VME
devices are usually either register based or belong to a miscellaneous class
(VI_VXI_CLASS_OTHER).

Related Items
See the INSTR Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 VI_VXI_CLASS_MEMORY (0)
VI_VXI_CLASS_EXTENDED (1)
VI_VXI_CLASS_MESSAGE (2)
VI_VXI_CLASS_REGISTER (3)
VI_VXI_CLASS_OTHER (4)

N/A

Chapter 3 Attributes

© National Instruments Corporation 3-109 NI-VISA Programmer Reference Manual

VI_ATTR_VXI_LA

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, VXI INSTR, VXI MEMACC, VXI SERVANT

Attribute Information

Description
For an INSTR session, VI_ATTR_VXI_LA specifies the logical address of the VXI or VME
device used by the given session. For a MEMACC or SERVANT session, this attribute
specifies the logical address of the local controller.

Related Items
See the INSTR Resource, MEMACC Resource, and SERVANT Resource descriptions in
Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViInt16 0 to 511 N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-110 ni.com

VI_ATTR_VXI_TRIG_STATUS

Resource Classes
GPIB-VXI BACKPLANE, VXI BACKPLANE

Attribute Information

Description
This attribute shows the current state of the VXI trigger lines. This is a bit vector with bits 0–9
corresponding to VI_TRIG_TTL0 through VI_TRIG_ECL1.

Related Items
See the VI_ATTR_VXI_VME_INTR_STATUS, VI_ATTR_VXI_TRIG_SUPPORT, and
VI_ATTR_VXI_VME_SYSFAIL_STATE descriptions in this chapter. See also the
BACKPLANE Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt32 N/A N/A

Chapter 3 Attributes

© National Instruments Corporation 3-111 NI-VISA Programmer Reference Manual

VI_ATTR_VXI_TRIG_SUPPORT

Resource Classes
GPIB-VXI INSTR, GPIB-VXI BACKPLANE, VXI INSTR, VXI BACKPLANE

Attribute Information

Description
This attribute shows which VXI trigger lines this implementation supports. This is a bit vector
with bits 0–9 corresponding to VI_TRIG_TTL0 through VI_TRIG_ECL1.

Related Items
See the BACKPLANE Resource and INSTR Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt32 N/A N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-112 ni.com

VI_ATTR_VXI_VME_INTR_STATUS

Resource Classes
GPIB-VXI BACKPLANE, VXI BACKPLANE

Attribute Information

Description
This attribute shows the current state of the VXI/VME interrupt lines. This is a bit vector with
bits 0–6 corresponding to interrupt lines 1–7.

Related Items
See the VI_ATTR_VXI_TRIG_STATUS and VI_ATTR_VXI_VME_SYSFAIL_STATE

descriptions in this chapter. See also the BACKPLANE Resource description in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViUInt16 N/A N/A

Chapter 3 Attributes

© National Instruments Corporation 3-113 NI-VISA Programmer Reference Manual

VI_ATTR_VXI_VME_SYSFAIL_STATE

Resource Classes
GPIB-VXI BACKPLANE, VXI BACKPLANE

Attribute Information

Description
This attribute shows the current state of the VXI/VME SYSFAIL (SYStem FAILure)
backplane line.

Related Items
See the VI_ATTR_VXI_TRIG_STATUS and VI_ATTR_VXI_VME_INTR_STATUS descriptions
in this chapter. See also the BACKPLANE Resource description in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Global

ViInt16 VI_STATE_ASSERTED(1)
VI_STATE_DEASSERTED (0)
VI_STATE_UNKNOWN (-1)

N/A

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-114 ni.com

VI_ATTR_WIN_ACCESS

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Attribute Information

Description
VI_ATTR_WIN_ACCESS specifies the modes in which the current window may be accessed.

• If VI_NMAPPED, the window is not currently mapped.

• If VI_USE_OPERS, the window is accessible through the viPeekXX() and viPokeXX()
operations only.

• If VI_DEREF_ADDR, you can either use operations or directly dereference the mapped
address as a pointer.

Related Items
See the VI_ATTR_WIN_ACCESS_PRIV, VI_ATTR_WIN_BASE_ADDR,
VI_ATTR_WIN_BYTE_ORDER, and VI_ATTR_WIN_SIZE descriptions in this chapter, and
see the viMapAddress(), viPeek8/viPeek16/viPeek32, and
viPoke8/viPoke16/viPoke32 descriptions in Chapter 5, Operations. Also see the
INSTR Resource and MEMACC Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read Only
Local

ViUInt16 VI_NMAPPED (1)
VI_USE_OPERS (2)
VI_DEREF_ADDR (3)

VI_NMAPPED

Chapter 3 Attributes

© National Instruments Corporation 3-115 NI-VISA Programmer Reference Manual

VI_ATTR_WIN_ACCESS_PRIV

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, VXI INSTR, VXI MEMACC

Attribute Information

Description
VI_ATTR_WIN_ACCESS_PRIV specifies the address modifier to be used in low-level access
operations, such as viMapAddress(), viPeekXX(), and viPokeXX(), when accessing the
mapped window.

This attribute is Read/Write when the corresponding session is not mapped (that is, when
VI_ATTR_WIN_ACCESS is VI_NMAPPED). When the session is mapped, this attribute is
Read Only.

Related Items
See the VI_ATTR_DEST_ACCESS_PRIV, VI_ATTR_SRC_ACCESS_PRIV,
VI_ATTR_WIN_ACCESS, VI_ATTR_WIN_BASE_ADDR, VI_ATTR_WIN_BYTE_ORDER,
and VI_ATTR_WIN_SIZE descriptions in this chapter. Also see the INSTR Resource and
MEMACC Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt16 VI_DATA_PRIV (0)
VI_DATA_NPRIV (1)
VI_PROG_PRIV (2)
VI_PROG_NPRIV (3)
VI_BLCK_PRIV (4)
VI_BLCK_NPRIV (5)

VI_DATA_PRIV

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-116 ni.com

VI_ATTR_WIN_BASE_ADDR

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Attribute Information

Description
VI_ATTR_WIN_BASE_ADDR specifies the base address of the interface bus to which this
window is mapped. If the value of VI_ATTR_WIN_ACCESS is VI_NMAPPED, the value of this
attribute is meaningless.

Related Items
See the VI_ATTR_WIN_ACCESS, VI_ATTR_WIN_ACCESS_PRIV,
VI_ATTR_WIN_BYTE_ORDER, and VI_ATTR_WIN_SIZE descriptions in this chapter.
Also see the INSTR Resource and MEMACC Resource descriptions in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read Only
Local

ViBusAddress 0h to FFFFFFFFh N/A

Chapter 3 Attributes

© National Instruments Corporation 3-117 NI-VISA Programmer Reference Manual

VI_ATTR_WIN_BYTE_ORDER

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, VXI INSTR, VXI MEMACC

Attribute Information

Description
VI_ATTR_WIN_BYTE_ORDER specifies the byte order to be used in low-level access
operations, such as viMapAddress(), viPeekXX(), and viPokeXX(), when accessing
the mapped window.

This attribute is read/write when the corresponding session is not mapped (that is, when
VI_ATTR_WIN_ACCESS is VI_NMAPPED). When the session is mapped, this attribute is
Read Only.

Related Items
See the VI_ATTR_DEST_BYTE_ORDER, VI_ATTR_SRC_BYTE_ORDER,
VI_ATTR_WIN_ACCESS, VI_ATTR_WIN_ACCESS_PRIV, VI_ATTR_WIN_BASE_ADDR,
and VI_ATTR_WIN_SIZE descriptions in this chapter. Also see the INSTR Resource and
MEMACC Resource descriptions in Appendix B, Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt16 VI_BIG_ENDIAN (0)
VI_LITTLE_ENDIAN (1)

VI_BIG_ENDIAN

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-118 ni.com

VI_ATTR_WIN_SIZE

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Attribute Information

Description
VI_ATTR_WIN_SIZE specifies the size of the region mapped to this window. If the value of
VI_ATTR_WIN_ACCESS is VI_NMAPPED, the value of this attribute is meaningless.

Related Items
See the VI_ATTR_WIN_ACCESS, VI_ATTR_WIN_ACCESS_PRIV,
VI_ATTR_WIN_BASE_ADDR, and VI_ATTR_WIN_BYTE_ORDER descriptions in this chapter.
Also see the INSTR Resource and MEMACC Resource descriptions in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read Only
Local

ViBusSize 0h to FFFFFFFFh N/A

Chapter 3 Attributes

© National Instruments Corporation 3-119 NI-VISA Programmer Reference Manual

VI_ATTR_WR_BUF_OPER_MODE

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Attribute Information

Description
VI_ATTR_WR_BUF_OPER_MODE specifies the operational mode of the formatted I/O write
buffer. When the operational mode is set to VI_FLUSH_WHEN_FULL (default), the buffer is
flushed when an END indicator is written to the buffer, or when the buffer fills up. If the
operational mode is set to VI_FLUSH_ON_ACCESS, the write buffer is flushed under the
same conditions, and also every time a viPrintf() (or related) operation completes.

Related Items
See the VI_ATTR_RD_BUF_OPER_MODE description in this chapter, and see the viPrintf()
and viFlush() descriptions in Chapter 5, Operations. Also see the INSTR Resource, INTFC
Resource, SERVANT Resource, and SOCKET Resource descriptions in Appendix B,
Resources.

Access
Privilege Data Type Range Default

Read/Write
Local

ViUInt16 VI_FLUSH_ON_ACCESS (1)
VI_FLUSH_WHEN_FULL (2)

VI_FLUSH_WHEN_FULL

Chapter 3 Attributes

NI-VISA Programmer Reference Manual 3-120 ni.com

VI_ATTR_WR_BUF_SIZE

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIC SOCKET, VXI INSTR, VXI SERVANT

Attribute Information

Description
This is the current size of the formatted I/O output buffer for this session.

Related Items
See the VI_ATTR_RD_BUF_SIZE and VI_ATTR_WR_BUF_OPER_MODE descriptions in this
chapter. Also see the viSetBuf description in Chapter 5, Operations.

Access
Privilege Data Type Range Default

Read Only
Local

ViUInt32 N/A N/A

© National Instruments Corporation 4-1 NI-VISA Programmer Reference Manual

4
Events

This chapter describes the VISA events. The event descriptions are listed in alphabetical order
for easy reference.

Each event description contains a list below the title indicating the supported resource classes,
such as GPIB, Serial, etc. The event description contains a brief description of the event
attributes. Chapter 3, Attributes, contains more detailed descriptions of the event attributes.

Chapter 4 Events

NI-VISA Programmer Reference Manual 4-2 ni.com

VI_EVENT_ASRL_BREAK

Note This event is valid only on Windows and platforms on which National Instruments
supports its ENET-Serial products.

Resource Classes
Serial INSTR

Description
Notification that a break signal was received.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE and VI_ATTR_ASRL_BREAK_STATE descriptions in
Chapter 3, Attributes. Also see the INSTR Resource description in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Chapter 4 Events

© National Instruments Corporation 4-3 NI-VISA Programmer Reference Manual

VI_EVENT_ASRL_CHAR

Note This event is valid only on Windows and platforms on which National Instruments
supports its ENET-Serial products.

Resource Classes
Serial INSTR

Description
Notification that at least one data byte has been received. Each data character will not
necessarily result in an event notification. In other words, if multiple data bytes arrive at once,
you may get only one event. After receiving this event, you should query the serial port for
the number of bytes available via the VI_ATTR_ASRL_AVAIL_NUM attribute.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE and VI_ATTR_ASRL_AVAIL_NUM descriptions in Chapter 3,
Attributes. Also see the INSTR Resource description in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Chapter 4 Events

NI-VISA Programmer Reference Manual 4-4 ni.com

VI_EVENT_ASRL_CTS

Note This event is valid only on Windows and platforms on which National Instruments
supports its ENET-Serial products.

Resource Classes
Serial INSTR

Description
Notification that the Clear To Send (CTS) line changed state. If the CTS line changes state
quickly several times in succession, not all line state changes will necessarily result in event
notifications.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE and VI_ATTR_ASRL_CTS_STATE descriptions in Chapter 3,
Attributes. Also see the INSTR Resource description in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Chapter 4 Events

© National Instruments Corporation 4-5 NI-VISA Programmer Reference Manual

VI_EVENT_ASRL_DCD

Note This event is valid only on Windows and platforms on which National Instruments
supports its ENET-Serial products.

Resource Classes
Serial INSTR

Description
Notification that the Data Carrier Detect (DCD) line changed state. If the DCD line changes
state quickly several times in succession, not all line state changes will necessarily result in
event notifications.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE and VI_ATTR_ASRL_DCD_STATE descriptions in Chapter 3,
Attributes. Also see the INSTR Resource description in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Chapter 4 Events

NI-VISA Programmer Reference Manual 4-6 ni.com

VI_EVENT_ASRL_DSR

Note This event is valid only on Windows and platforms on which National Instruments
supports its ENET-Serial products.

Resource Classes
Serial INSTR

Description
Notification that the Data Set Ready (DSR) line changed state. If the DSR line changes state
quickly several times in succession, not all line state changes will necessarily result in event
notifications.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE and VI_ATTR_ASRL_DSR_STATE descriptions in Chapter 3,
Attributes. Also see the INSTR Resource description in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Chapter 4 Events

© National Instruments Corporation 4-7 NI-VISA Programmer Reference Manual

VI_EVENT_ASRL_RI

Note This event is valid only on Windows and platforms on which National Instruments
supports its ENET-Serial products.

Resource Classes
Serial INSTR

Description
Notification that the Ring Indicator (RI) input signal was asserted.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE and VI_ATTR_ASRL_RI_STATE descriptions in Chapter 3,
Attributes. Also see the INSTR Resource description in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Chapter 4 Events

NI-VISA Programmer Reference Manual 4-8 ni.com

VI_EVENT_ASRL_TERMCHAR

Note This event is valid only on Windows and platforms on which National Instruments
supports its ENET-Serial products.

Resource Classes
Serial INSTR

Description
Notification that the termination character has been received. The actual termination character
is specified by setting VI_ATTR_TERMCHAR prior to enabling this event. For this event, the
setting of VI_ATTR_TERMCHAR_EN is ignored.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE, VI_ATTR_ASRL_AVAIL_NUM, and VI_ATTR_TERMCHAR

descriptions in Chapter 3, Attributes. Also see the INSTR Resource description in
Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Chapter 4 Events

© National Instruments Corporation 4-9 NI-VISA Programmer Reference Manual

VI_EVENT_CLEAR

Resource Classes
GPIB INTFC, GPIB SERVANT, VXI SERVANT

Description
Notification that the local controller has been sent a device clear message.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE description in Chapter 3, Attributes. Also see the INTFC
Resource and SERVANT Resource descriptions in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Chapter 4 Events

NI-VISA Programmer Reference Manual 4-10 ni.com

VI_EVENT_EXCEPTION

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Description
This event notifies the application that an error condition has occurred during an operation
invocation. In VISA, exceptions are defined as events. The exception-handling model follows
the event-handling model for callbacks, and is like any other event in VISA, except that the
queueing and suspended handler mechanisms are not allowed.

A VISA operation generating an exception blocks until the exception handler execution is
completed. However, an exception handler sometimes may prefer to terminate the program
prematurely without returning the control to the operation generating the exception. VISA
does not preclude an application from using a platform-specific or language-specific
exception handling mechanism from within the VISA exception handler. For example, the
C++ try/catch block can be used in an application in conjunction with the C++ throw
mechanism from within the VISA exception handler.

When using the C++ try/catch/throw or other exception-handling mechanisms, the control
will not return to the VISA system. This has some important repercussions:

• If multiple handlers were installed on the exception event, the handlers that were not
invoked prior to the current handler will not be invoked for the current exception.

• The exception context will not be deleted by the VISA system when a C++ exception
is used. In this case, the application should delete the exception context as soon as
the application has no more use for the context, before terminating the session. An
application should use the viClose() operation to delete the exception context.

One situation in which an exception event will not be generated is in the case of asynchronous
operations. If the error is detected after the operation is posted—once the asynchronous
portion has begun—the status is returned normally via the I/O completion event. However,
if an error occurs before the asynchronous portion begins—the error is returned from the
asynchronous operation itself—then the exception event will still be raised. This deviation is
due to the fact that asynchronous operations already raise an event when they complete, and
this I/O completion event may occur in the context of a separate thread previously unknown
to the application. In summary, a single application event handler can easily handle error
conditions arising from both exception events and failed asynchronous operations.

Chapter 4 Events

© National Instruments Corporation 4-11 NI-VISA Programmer Reference Manual

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE, VI_ATTR_STATUS, and VI_ATTR_OPER_NAME

descriptions in Chapter 3, Attributes, and see the viEnableEvent() description in
Chapter 5, Operations. Also see Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event. This attribute
always has the value of VI_EVENT_EXCEPTION for
this event type.

VI_ATTR_STATUS Contains the status code returned by the operation
generating the error.

VI_ATTR_OPER_NAME Contains the name of the operation generating the
event.

Chapter 4 Events

NI-VISA Programmer Reference Manual 4-12 ni.com

VI_EVENT_GPIB_CIC

Resource Classes
GPIB INTFC

Description

Notification that the GPIB controller has gained or lost CIC (controller in charge) status.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE and VI_ATTR_GPIB_CIC_STATE descriptions in Chapter 3,
Attributes. Also see the INTFC Resource description in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_GPIB_RECV_CIC_STATE Specifies whether the CIC status was gained
or lost.

Chapter 4 Events

© National Instruments Corporation 4-13 NI-VISA Programmer Reference Manual

VI_EVENT_GPIB_LISTEN

Resource Classes
GPIB INTFC, GPIB SERVANT

Description

Notification that the GPIB controller has been addressed to listen.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE description in Chapter 3, Attributes. Also see the INTFC
Resource and SERVANT Resource descriptions in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Chapter 4 Events

NI-VISA Programmer Reference Manual 4-14 ni.com

VI_EVENT_GPIB_TALK

Resource Classes
GPIB INTFC, GPIB SERVANT

Description

Notification that the GPIB controller has been addressed to talk.

Event Attribute

Related Items
See the VI_ATTR_EVENT_TYPE description in Chapter 3, Attributes. Also see the INTFC
Resource and SERVANT Resource descriptions in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Chapter 4 Events

© National Instruments Corporation 4-15 NI-VISA Programmer Reference Manual

VI_EVENT_IO_COMPLETION

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET, VXI INSTR, VXI MEMACC,
VXI SERVANT

Description
This event notifies the application that an asynchronous operation has completed.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE, VI_ATTR_STATUS, VI_ATTR_JOB_ID,
VI_ATTR_BUFFER, VI_ATTR_RET_COUNT, and VI_ATTR_OPER_NAME descriptions in
Chapter 3, Attributes. Also see the INSTR Resource, MEMACC Resource, INTFC Resource,
SERVANT Resource, and SOCKET Resource descriptions in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event. This attribute
always has the value of VI_EVENT_IO_COMPLETION
for this event type.

VI_ATTR_STATUS Contains the return code of the asynchronous I/O
operation that has completed.

VI_ATTR_JOB_ID Contains the job ID of the asynchronous operation that
has completed.

VI_ATTR_BUFFER Contains the address of the buffer that was used in the
asynchronous operation.

VI_ATTR_RET_COUNT Contains the actual number of elements that were
asynchronously transferred.

VI_ATTR_OPER_NAME Contains the name of the operation generating the
event.

Chapter 4 Events

NI-VISA Programmer Reference Manual 4-16 ni.com

VI_EVENT_PXI_INTR

Resource Classes
PXI INSTR

Description
This event notifies that a PXI interrupt has occurred.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE description in Chapter 3, Attributes. Also see the INSTR
Resource description in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Chapter 4 Events

© National Instruments Corporation 4-17 NI-VISA Programmer Reference Manual

VI_EVENT_SERVICE_REQ

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB-VXI INSTR, TCPIP INSTR, VXI INSTR

Description
This event notifies the application that a service request was received from the device or
interface associated with the given session.

Note When you receive a VI_EVENT_SERVICE_REQ on an INSTR session, you must call
viReadSTB() to guarantee delivery of future service request events on the given session.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE description in Chapter 3, Attributes, and see the
viReadSTB() description in Chapter 5, Operations. Also see the INSTR Resource and
INTFC Resource descriptions in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event. This attribute
always has the value of VI_EVENT_SERVICE_REQ for
this event type.

Chapter 4 Events

NI-VISA Programmer Reference Manual 4-18 ni.com

VI_EVENT_TRIG

Resource Classes
GPIB INTFC, GPIB SERVANT, VXI INSTR, VXI BACKPLANE, VXI SERVANT

Description
This event notifies the application that a trigger interrupt was received from the device. This
may be either a hardware or software trigger, depending on the interface and the current
session settings.

Event Attributes

Related Items
See the VI_ATTR_TRIG_ID, VI_ATTR_EVENT_TYPE, and VI_ATTR_RECV_TRIG_ID

descriptions in Chapter 3, Attributes. Also see the INSTR Resource, INTFC Resource,
BACKPLANE Resource, and SERVANT Resource descriptions in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event. This attribute
always has the value of VI_EVENT_TRIG for this event
type.

VI_ATTR_RECV_TRIG_ID The identifier of the triggering mechanism on which
the specified trigger event was received.

Chapter 4 Events

© National Instruments Corporation 4-19 NI-VISA Programmer Reference Manual

VI_EVENT_VXI_SIGP

Resource Classes
VXI INSTR

Description
This event notifies the application that a VXIbus signal or VXIbus interrupt was received from
the device associated with the given session.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE and VI_ATTR_SIGP_STATUS_ID descriptions in Chapter 3,
Attributes. Also see the INSTR Resource description in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event. This attribute
always has the value of VI_EVENT_VXI_SIGP for this
event type.

VI_ATTR_SIGP_STATUS_ID The 16-bit Status/ID value retrieved during the IACK
cycle or from the Signal register.

Chapter 4 Events

NI-VISA Programmer Reference Manual 4-20 ni.com

VI_EVENT_VXI_VME_INTR

Resource Classes
VXI INSTR

Description
This event notifies the application that a VXIbus interrupt was received from the device
associated with the given session.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE, VI_ATTR_INTR_STATUS_ID, and
VI_ATTR_RECV_INTR_LEVEL descriptions in Chapter 3, Attributes. Also see the INSTR
Resource description in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event. This attribute
always has the value of VI_EVENT_VXI_VME_INTR
for this event type.

VI_ATTR_INTR_STATUS_ID The 32-bit Status/ID value retrieved during the IACK
cycle.

VI_ATTR_RECV_INTR_LEVEL The VXI interrupt level on which the interrupt was
received.

Chapter 4 Events

© National Instruments Corporation 4-21 NI-VISA Programmer Reference Manual

VI_EVENT_VXI_VME_SYSFAIL

Resource Classes
VXI BACKPLANE

Description

Notification that the VXI/VME SYSFAIL* line has been asserted.

Event Attributes

Related Items
See VI_ATTR_EVENT_TYPE in Chapter 3, Attributes. Also see BACKPLANE Resource in
Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Chapter 4 Events

NI-VISA Programmer Reference Manual 4-22 ni.com

VI_EVENT_VXI_VME_SYSRESET

Resource Classes
VXI BACKPLANE, VXI SERVANT

Description

Notification that the VXI/VME SYSRESET* line has been asserted.

Event Attributes

Related Items
See the VI_ATTR_EVENT_TYPE description in Chapter 3, Attributes. Also see BACKPLANE
Resource and SERVANT Resource in Appendix B, Resources.

Symbolic Name Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

© National Instruments Corporation 5-1 NI-VISA Programmer Reference Manual

5
Operations

This chapter describes the VISA operations. The operation descriptions are listed in
alphabetical order for easy reference.

Each event description contains a brief Purpose statement below the title. You will then see
the operation defined in both ANSI C and Visual Basic version 4 syntax, with the parameters
set in boldface type. A list indicating the supported resource classes, such as GPIB, Serial,
etc. is followed by a table that describes each parameter and indicates whether it is an input
or output parameter (or both, in some cases). The Return Values section describes the
completion and error codes, followed by a detailed Description section. The Related Items
section directs you toward related operations, attributes, events, or resource descriptions. If
you want to know specifically about attributes, events, and operations of the INSTR Resource,
for example, you should turn to the INSTR Resource section in Appendix B, Resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-2 ni.com

viAssertIntrSignal

Purpose
Asserts the specified interrupt or signal.

C Syntax
ViStatus viAssertIntrSignal(ViSession vi, ViInt16 mode,

ViUInt32 statusID)

Visual Basic Syntax
viAssertIntrSignal&(ByVal vi&, ByVal mode%, ByVal statusID&)

Resource Classes
GPIB-VXI BACKPLANE, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

mode IN This specifies how to assert the interrupt. See the
Description section for actual values.

statusID IN This is the status value to be presented during an interrupt
acknowledge cycle. See the Description section for valid
values.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Chapter 5 Operations

© National Instruments Corporation 5-3 NI-VISA Programmer Reference Manual

Description
This operation can be used to assert a device interrupt condition. In VXI, for example, this
can be done with either a VXI signal or a VXI interrupt. On certain bus types, the statusID
parameter may be ignored. The following table lists the valid values for the mode parameter.

Related Items
See the viAssertUtilSignal() description in this chapter and the BACKPLANE
Resource and SERVANT Resource descriptions in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INTR_PENDING An interrupt is still pending from a previous call.

VI_ERROR_INV_MODE The value specified by the mode parameter is
invalid.

VI_ERROR_NSUP_INTR The interface cannot generate an interrupt on the
requested level or with the requested statusID
value.

VI_ERROR_NSUP_MODE The specified mode is not supported by this VISA
implementation.

Mode Action Description

VI_ASSERT_USE_ASSIGNED Use whatever notification method that has been
assigned to the local device.

VI_ASSERT_SIGNAL Send the notification via a VXI signal.

VI_ASSERT_IRQ1 –

VI_ASSERT_IRQ7

Send the interrupt via the specified VXI/VME IRQ
line. This uses the standard VXI/VME ROAK
(release on acknowledge) interrupt mechanism,
rather than the older VME RORA (release on
register access) mechanism.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-4 ni.com

viAssertTrigger

Purpose
Asserts software or hardware trigger.

C Syntax
ViStatus viAssertTrigger(ViSession vi, ViUInt16 protocol)

Visual Basic Syntax
viAssertTrigger&(ByVal vi&, ByVal protocol%)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB-VXI INSTR, GPIB-VXI BACKPLANE, Serial INSTR,
TCPIP INSTR, TCPIP SOCKET, VXI INSTR, VXI BACKPLANE

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

protocol IN Trigger protocol to use during assertion. Valid values are:
VI_TRIG_PROT_DEFAULT (0),
VI_TRIG_PROT_ON (1),
VI_TRIG_PROT_OFF (2), and
VI_TRIG_PROT_SYNC (5).

Completion Codes Description

VI_SUCCESS The specified trigger was successfully asserted to
the device.

Chapter 5 Operations

© National Instruments Corporation 5-5 NI-VISA Programmer Reference Manual

Description
The viAssertTrigger() operation will source a software or hardware trigger dependent
on the interface type. For a GPIB device, the device is addressed to listen, and then the GPIB
GET command is sent. For a VXI device, if VI_ATTR_TRIG_ID is VI_TRIG_SW, then the
device is sent the Word Serial Trigger command; for any other values of the attribute, a
hardware trigger is sent on the line that corresponds to the value of that attribute. For a session
to a Serial device or Ethernet socket, if VI_ATTR_IO_PROT is VI_PROT_4882_STRS, the
device is sent the string "*TRG\n"; otherwise, this operation is not valid.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_PROT The protocol specified is invalid.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_LINE_IN_USE The specified trigger line is currently in use.

VI_ERROR_NCIC The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS No-listeners condition is detected (both NRFD and
NDAC are unasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

VI_ERROR_CONN_LOST The I/O connection for the given session has been
lost.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-6 ni.com

For GPIB, serial, and VXI software triggers, VI_TRIG_PROT_DEFAULT is the only valid
protocol. For VXI hardware triggers, VI_TRIG_PROT_DEFAULT is equivalent to
VI_TRIG_PROT_SYNC.

Related Items
See the VI_ATTR_TRIG_ID description in Chapter 3, Attributes. Also see the INSTR
Resource, SOCKET Resource, BACKPLANE Resource, and INTFC Resource descriptions
in Appendix B, Resources.

Chapter 5 Operations

© National Instruments Corporation 5-7 NI-VISA Programmer Reference Manual

viAssertUtilSignal

Purpose

Asserts or deasserts the specified utility bus signal.

C Syntax
viStatus viAssertUtilSignal(ViSession vi, ViUInt16 line)

Visual Basic Syntax
viAssertUtilSignal&(ByVal vi&, ByVal line%)

Resource Classes
GPIB-VXI BACKPLANE, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

line IN Specifies the utility bus signal to assert. This can be the
value VI_UTIL_ASSERT_SYSRESET,
VI_UTIL_ASSERT_SYSFAIL, or
VI_UTIL_DEASSERT_SYSFAIL.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-8 ni.com

Description
This operation can be used to assert either the SYSFAIL or SYSRESET utility bus interrupts
on the VXIbus backplane. This operation is valid only on BACKPLANE (mainframe) and
VXI SERVANT (servant) sessions.

Asserting SYSRESET (also known as HARD RESET in the VXI specification) should be
used only when it is necessary to promptly terminate operation of all devices in a VXIbus
system. This is a serious action that always affects the entire VXIbus system.

Related Items
See the viAssertIntrSignal() description in this chapter and the BACKPLANE
Resource and SERVANT Resource descriptions in Appendix B, Resources.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_INV_LINE The value specified by the line parameter is invalid.

Error Codes Description

Chapter 5 Operations

© National Instruments Corporation 5-9 NI-VISA Programmer Reference Manual

viBufRead

Purpose
Reads data from device or interface through the use of a formatted I/O read buffer.

C Syntax
ViStatus viBufRead(ViSession vi, ViPBuf buf, ViUInt32 count,

ViPUInt32 retCount)

Visual Basic Syntax
viBufRead&(ByVal vi&, ByVal buf$, ByVal count&, retCount&)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR,
TCPIP INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Name Direction Description

vi IN Unique logical identifier to a session.

buf OUT Location of a buffer to receive data from device.

count IN Number of bytes to be read.

retCount OUT Number of bytes actually transferred.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-10 ni.com

Return Values

Description
The viBufRead() operation is similar to viRead() and does not perform any kind of data
formatting. It differs from viRead() in that the data is read from the formatted I/O read
buffer—the same buffer used by viScanf() and related operations—rather than directly
from the device. You can intermix this operation with viScanf(), but you should not mix it
with viRead().

VI_NULL is a special value for the retCount parameter. If you pass VI_NULL for retCount,
the number of bytes transferred is not returned. You may find this useful if you need to know
only whether the operation succeeded or failed.

Completion Codes Description

VI_SUCCESS The operation completed successfully and the END
indicator was received (for interfaces that have
END indicators). This completion code is returned
regardless of whether the termination character is
received or the number of bytes read is equal to
count.

VI_SUCCESS_TERM_CHAR The specified termination character was read but no
END indicator was received. This completion code
is returned regardless of whether the number of
bytes read is equal to count.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count. No
END indicator was received and no termination
character was read.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_IO An unknown I/O error occurred during transfer.

Chapter 5 Operations

© National Instruments Corporation 5-11 NI-VISA Programmer Reference Manual

Related Items
See the viRead() and viBufWrite() descriptions in this chapter. Also see the INSTR
Resource, INTFC Resource, SERVANT Resource, and SOCKET Resource descriptions in
Appendix B, Resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-12 ni.com

viBufWrite

Purpose
Writes data to a formatted I/O write buffer synchronously.

C Syntax
ViStatus viBufWrite(ViSession vi, ViBuf buf, ViUInt32 count,

ViPUInt32 retCount)

Visual Basic Syntax
viBufWrite&(ByVal vi&, ByVal buf$, ByVal count&, retCount&)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR,
TCPIP INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

buf IN Location of a block of data.

count IN Number of bytes to be written.

retCount OUT Number of bytes actually transferred.

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Chapter 5 Operations

© National Instruments Corporation 5-13 NI-VISA Programmer Reference Manual

Description
The viBufWrite() operation is similar to viWrite() and does not perform any kind of
data formatting. It differs from viWrite() in that the data is written to the formatted I/O
write buffer—the same buffer used by viPrintf() and related operations—rather than
directly to the device. You can intermix this operation with viPrintf(), but you should not
mix it with viWrite().

If this operation returns VI_ERROR_TMO, the write buffer for the specified session is cleared.

VI_NULL is a special value for the retCount parameter. If you pass VI_NULL for retCount,
the number of bytes transferred is not returned. You may find this useful if you need to know
only whether the operation succeeded or failed.

Related Items
See the viWrite() and viBufRead() descriptions in this chapter. Also see the INSTR
Resource, INTFC Resource, SERVANT Resource, and SOCKET Resource descriptions in
Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_INV_SETUP Unable to start write operation because setup is
invalid (due to attributes being set to an inconsistent
state).

VI_ERROR_IO An unknown I/O error occurred during transfer.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-14 ni.com

viClear

Purpose
Clears a device.

C Syntax
ViStatus viClear(ViSession vi)

Visual Basic Syntax
viClear&(ByVal vi&)

Resource Classes
GPIB INSTR, GPIB-VXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

Chapter 5 Operations

© National Instruments Corporation 5-15 NI-VISA Programmer Reference Manual

Description
The viClear() operation performs an IEEE 488.1-style clear of the device (for VXI, the
Word Serial Clear command is used; for GPIB systems, the Selected Device Clear command
is used). For a session to a Serial device or Ethernet socket, if VI_ATTR_IO_PROT is
VI_PROT_4882_STRS, the device is sent the string “*CLS\n”; otherwise, this operation is
not valid. Invoking viClear() on an INSTR Resource will also discard the read and write
buffers used by the formatted I/O services for that session.

Related Items
See the INSTR Resource and SOCKET Resource descriptions in Appendix B, Resources.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS No-listeners condition is detected (both NRFD and
NDAC are unasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

VI_ERROR_CONN_LOST The I/O connection for the given session has been
lost.

Error Codes Description

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-16 ni.com

viClose

Purpose
Closes the specified session, event, or find list.

C Syntax
ViStatus viClose(ViObject vi)

Visual Basic Syntax
viClose&(ByVal vi&)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session, event, or find list.

Completion Codes Description

VI_SUCCESS Session closed successfully.

VI_WARN_NULL_OBJECT The specified object reference is uninitialized.

Error Codes Description

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated data
structures corresponding to this session or object
reference.

Chapter 5 Operations

© National Instruments Corporation 5-17 NI-VISA Programmer Reference Manual

Description
The viClose() operation closes a session, event, or a find list. In this process all the data
structures that had been allocated for the specified vi are freed. Calling viClose() on a
VISA Resource Manager session will also close all I/O sessions associated with that resource
manager session.

Related Items
See the viOpen(), viOpenDefaultRM(), viFindRsrc(), and viWaitOnEvent()

descriptions in this chapter. Also see the VISA Resource Template description in Appendix B,
Resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-18 ni.com

viDisableEvent

Purpose
Disables notification of the specified event type(s) via the specified mechanism(s).

C Syntax
ViStatus viDisableEvent(ViSession vi, ViEventType eventType,

ViUInt16 mechanism)

Visual Basic Syntax
viDisableEvent&(ByVal vi&, ByVal eventType&, ByVal mechanism%)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

mechanism IN Specifies event handling mechanisms to be disabled.
The queuing mechanism is disabled by specifying
VI_QUEUE (1), and the callback mechanism is disabled by
specifying VI_HNDLR (2) or VI_SUSPEND_HNDLR (4). It
is possible to disable both mechanisms simultaneously by
specifying VI_ALL_MECH (FFFFh).

Completion Codes Description

VI_SUCCESS Event disabled successfully.

VI_SUCCESS_EVENT_DIS Specified event is already disabled for at least one
of the specified mechanisms.

Chapter 5 Operations

© National Instruments Corporation 5-19 NI-VISA Programmer Reference Manual

Description
The viDisableEvent() operation disables servicing of an event identified by the
eventType parameter for the mechanisms specified in the mechanism parameter. This
operation prevents new event occurrences from being added to the queue(s). However, event
occurrences already existing in the queue(s) are not flushed. Use viDiscardEvents() if
you want to discard events remaining in the queue(s).

Specifying VI_ALL_ENABLED_EVENTS for the eventType parameter allows a session to stop
receiving all events. The session can stop receiving queued events by specifying VI_QUEUE.
Applications can stop receiving callback events by specifying either VI_HNDLR or
VI_SUSPEND_HNDLR. Specifying VI_ALL_MECH disables both the queuing and callback
mechanisms.

Note Calling viDisableEvent() prevents future events from being raised on the given
session. When the method returns to the application, it is possible that a callback may still
be active, such as on another thread. It is valid for a user to call viDisableEvent() from
within a callback, but this is not recommended.

Related Items
See the viEnableEvent() and viUninstallHandler() descriptions in this chapter. Also
see the VISA Resource Template description in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_INV_EVENT Specified eventType is not supported by the
resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-20 ni.com

viDiscardEvents

Purpose
Discards event occurrences for specified event types and mechanisms in a session.

C Syntax
ViStatus viDiscardEvents(ViSession vi, ViEventType eventType,

ViUInt16 mechanism)

Visual Basic Syntax
viDiscardEvents&(ByVal vi&, ByVal eventType&, ByVal mechanism%)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

mechanism IN Specifies the mechanisms for which the events are to be
discarded. The VI_QUEUE (1) value is specified for the
queuing mechanism and the VI_SUSPEND_HNDLR (4)
value is specified for the pending events in the callback
mechanism. It is possible to specify both mechanisms
simultaneously by specifying VI_ALL_MECH (FFFFh).

Completion Codes Description

VI_SUCCESS Event queue flushed successfully.

VI_SUCCESS_QUEUE_EMPTY Operation completed successfully, but queue was
already empty.

Chapter 5 Operations

© National Instruments Corporation 5-21 NI-VISA Programmer Reference Manual

Description
The viDiscardEvents() operation discards all pending occurrences of the specified event
types and mechanisms from the specified session. Specifying VI_ALL_ENABLED_EVENTS for
the eventType parameter discards events of every type that is enabled for the given session.
The information about all the event occurrences that have not yet been handled is discarded.
This operation is useful to remove event occurrences that an application no longer needs. The
discarded event occurrences are not available to a session at a later time. This operation does
not apply to event contexts that have already been delivered to the application.

Related Items
See the viEnableEvent(), viDisableEvent(), and viWaitOnEvent() descriptions in
this chapter. Also see the VISA Resource Template description in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_INV_EVENT Specified eventType is not supported by the
resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-22 ni.com

viEnableEvent

Purpose
Enables notification of a specified event.

C Syntax
ViStatus viEnableEvent(ViSession vi, ViEventType eventType,

ViUInt16 mechanism, ViEventFilter context)

Visual Basic Syntax
viEnableEvent&(ByVal vi&, ByVal eventType&, ByVal mechanism%,

ByVal context&)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Name Direction Description

vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

mechanism IN Specifies event handling mechanisms to be enabled. The
queuing mechanism is enabled by specifying VI_QUEUE

(1), and the callback mechanism is enabled by specifying
VI_HNDLR (2) or VI_SUSPEND_HNDLR (4). It is possible
to enable both mechanisms simultaneously by specifying
bit-wise OR of VI_QUEUE and one of the two mode values
for the callback mechanism.

context IN VI_NULL (0).

Chapter 5 Operations

© National Instruments Corporation 5-23 NI-VISA Programmer Reference Manual

Return Values

Description
The viEnableEvent() operation enables notification of an event identified by the
eventType parameter for mechanisms specified in the mechanism parameter. The specified
session can be enabled to queue events by specifying VI_QUEUE. Applications can enable the
session to invoke a callback function to execute the handler by specifying VI_HNDLR. The
applications are required to install at least one handler to be enabled for this mode. Specifying
VI_SUSPEND_HNDLR enables the session to receive callbacks, but the invocation of the
handler is deferred to a later time. Successive calls to this operation replace the old callback
mechanism with the new callback mechanism. Specifying VI_ALL_ENABLED_EVENTS for
the eventType parameter refers to all events which have previously been enabled on this
session, making it easier to switch between the two callback mechanisms for multiple events.

Completion Codes Description

VI_SUCCESS Event enabled successfully.

VI_SUCCESS_EVENT_EN Specified event is already enabled for at least one of
the specified mechanisms.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_INV_EVENT Specified eventType is not supported by the
resource.

VI_ERROR_INV_MECH Invalid mechanism specified for the event.

VI_ERROR_INV_CONTEXT Specified event context is invalid.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the
specified event. The session cannot be enabled for
the VI_HNDLR mode of the callback mechanism.

VI_ERROR_NSUP_MECH The specified mechanism is not supported for the
given eventType.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-24 ni.com

Related Items
See the viDisableEvent() and viWaitOnEvent() descriptions in this chapter, and see
the viInstallHandler() and viUninstallHandler() descriptions in this chapter for
information about installing and uninstalling event handlers. Also see Chapter 4, Events, for
a list of events that you can enable, and see the VISA Resource Template description in
Appendix B, Resources.

Chapter 5 Operations

© National Instruments Corporation 5-25 NI-VISA Programmer Reference Manual

viEventHandler

Purpose
Event service handler procedure prototype.

C Syntax
ViStatus _VI_FUNCH viEventHandler(ViSession vi,

ViEventType eventType, ViEvent context, ViAddr userHandle)

Visual Basic Syntax
N/A

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

context IN A handle specifying the unique occurrence of an event.

userHandle IN A value specified by an application that can be used for
identifying handlers uniquely in a session for an event.

Completion Codes Description

VI_SUCCESS Event handled successfully.

VI_SUCCESS_NCHAIN Event handled successfully. Do not invoke any
other handlers on this session for this event.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-26 ni.com

Description
viEventHandler() is not an actual VISA operation. Rather, it is the prototype for a user
event handler that is installed with the viInstallHandler() operation. The user handler
is called whenever a session receives an event and is enabled for handling events in the
VI_HNDLR mode. The handler services the event and returns VI_SUCCESS on completion.
The VISA system automatically invokes the viClose() operation on the event context when
a user handler returns.

Because the event context must still be valid after the user handler returns (so that VISA can
free it up), an application should not invoke the viClose() operation on an event context
passed to a user handler.

Note For advanced users—If the user handler will not return to VISA, the application
should call viClose() on the event context to manually delete the event object. This
situation may occur when a handler throws a C++ exception in response to a VISA
exception event.

Normally, an application should always return VI_SUCCESS from all callback handlers.
If a specific handler does not want other handlers to be invoked for the given event for the
given session, it should return VI_SUCCESS_NCHAIN. No return value from a handler on
one session will affect callbacks on other sessions. Future versions of VISA (or specific
implementations of VISA) may take actions based on other return values, so a user should
return VI_SUCCESS from handlers unless there is a specific reason to do otherwise.

Related Items
See viInstallHandler() and viUninstallHandler() descriptions in this chapter.
Also see the VISA Resource Template description in Appendix B, Resources.

Chapter 5 Operations

© National Instruments Corporation 5-27 NI-VISA Programmer Reference Manual

viFindNext

Purpose
Returns the next resource from the list of resources found during a previous call to
viFindRsrc().

C Syntax
ViStatus viFindNext(ViFindList findList, ViChar instrDesc[])

Visual Basic Syntax
viFindNext&(ByVal findList&, ByVal instrDesc$)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

findList IN Describes a find list. This parameter must be created by
viFindRsrc().

instrDesc OUT Returns a string identifying the location of a device.
Strings can then be passed to viOpen() to establish a
session to the given device.

Completion Codes Description

VI_SUCCESS Resource(s) found.

Error Codes Description

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given findList does not support this operation.

VI_ERROR_RSRC_NFOUND There are no more matches.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-28 ni.com

Description
The viFindNext() operation returns the next device found in the list created by
viFindRsrc(). The list is referenced by the handle that was returned by viFindRsrc().

Note The size of the instrDesc parameter should be at least 256 bytes.

Related Items
See the viFindRsrc() description in this chapter. Also see the VISA Resource Template
description in Appendix B, Resources.

Chapter 5 Operations

© National Instruments Corporation 5-29 NI-VISA Programmer Reference Manual

viFindRsrc

Purpose
Queries a VISA system to locate the resources associated with a specified interface.

C Syntax
ViStatus viFindRsrc(ViSession sesn, ViString expr,

ViPFindList findList, ViPUInt32 retcnt, ViChar instrDesc[])

Visual Basic Syntax
viFindRsrc&(ByVal sesn&, ByVal expr$, findList&, retcnt&,

ByVal instrDesc$)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Name Direction Description

sesn IN Resource Manager session—should always be the session
returned from viOpenDefaultRM().

expr IN This is a regular expression followed by an optional
logical expression. Refer to the discussion of the
Description String in the Description section of this
operation.

findList OUT Returns a handle identifying this search session. This
handle will be used as an input in viFindNext().

retcnt OUT Number of matches.

instrDesc OUT Returns a string identifying the location of a device.
Strings can then be passed to viOpen() to establish a
session to the given device.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-30 ni.com

Return Values

Description
The viFindRsrc() operation matches the value specified in the expr parameter with the
resources available for a particular interface. A regular expression is a string consisting of
ordinary characters as well as special characters. You use a regular expression to specify
patterns to match in a given string; in other words, it is a search criterion. The viFindRsrc()
operation uses a case-insensitive compare feature when matching resource names against the
regular expression specified in expr. For example, calling viFindRsrc() with
“VXI?*INSTR” would return the same resources as invoking it with “vxi?*instr”.

On successful completion, this function returns the first resource found (instrDesc) and
returns a count (retcnt) to indicate if there were more resources found for the designated
interface. This function also returns, in the findList parameter, a handle to a find list. This
handle points to the list of resources and it must be used as an input to viFindNext(). When
this handle is no longer needed, it should be passed to viClose(). Notice that retcnt and
findList are optional parameters. This is useful if only the first match is important, and the
number of matches is not needed. If you specify VI_NULL in the findList parameter and the
operation completes successfully, VISA automatically invokes viClose() on the find list
handle rather than returning it to the application.

Note The size of the instrDesc parameter should be at least 256 bytes.

The search criteria specified in the expr parameter has two parts: a regular expression over
a resource string, and an optional logical expression over attribute values. The regular
expression is matched against the resource strings of resources known to the VISA Resource
Manager. If the resource string matches the regular expression, the attribute values of the

Completion Codes Description

VI_SUCCESS Resource(s) found.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given sesn does not support this operation. This
operation is supported only by a Resource Manager
session.

VI_ERROR_INV_EXPR Invalid expression specified for search.

VI_ERROR_RSRC_NFOUND Specified expression does not match any devices.

Chapter 5 Operations

© National Instruments Corporation 5-31 NI-VISA Programmer Reference Manual

resource are then matched against the expression over attribute values. If the match is
successful, the resource has met the search criteria and gets added to the list of resources
found. All resource strings returned by viFindRsrc() will always be recognized by
viOpen(). However, viFindRsrc() will not necessarily return all strings that you can pass
to viParseRsrc() or viOpen(). This is especially true for network and TCPIP resources.

Special Characters
and Operators Meaning

? Matches any one character.

\ Makes the character that follows it an ordinary character
instead of special character. For example, when a question
mark follows a backslash (\?), it matches the ? character
instead of any one character.

[list] Matches any one character from the enclosed list. You can
use a hyphen to match a range of characters.

[^list] Matches any character not in the enclosed list. You can use
a hyphen to match a range of characters.

* Matches 0 or more occurrences of the preceding character or
expression.

+ Matches 1 or more occurrences of the preceding character or
expression.

exp|exp Matches either the preceding or following expression. The or
operator | matches the entire expression that precedes or
follows it and not just the character that precedes or follows it.
For example, VXI|GPIB means (VXI)|(GPIB),
not VX(I|G)PIB.

(exp) Grouping characters or expressions.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-32 ni.com

By using the optional attribute expression, you can construct flexible and powerful
expressions with the use of logical ANDs (&&), ORs(||), and NOTs (!). You can use
equal (==) and unequal (!=) comparators to compare attributes of any type, and other
inequality comparators (>, <, >=, <=) to compare attributes of numeric type. Use only

Regular Expression Sample Matches

GPIB?*INSTR Matches GPIB0::2::INSTR,
GPIB1::1::1::INSTR, and
GPIB-VXI1::8::INSTR.

GPIB[0-9]*::?*INSTR Matches GPIB0::2::INSTR and
GPIB1::1::1::INSTR but not
GPIB-VXI1::8::INSTR.

GPIB[^0]::?*INSTR Matches GPIB1::1::1::INSTR but not
GPIB0::2::INSTR or GPIB12::8::INSTR.

VXI?*INSTR Matches VXI0::1::INSTR but not
GPIB-VXI0::1::INSTR.

GPIB-VXI?*INSTR Matches GPIB-VXI0::1::INSTR but not
VXI0::1::INSTR.

?*VXI[0-9]*::?*INSTR Matches VXI0::1::INSTR and
GPIB-VXI0::1::INSTR.

ASRL[0-9]*::?*INSTR Matches ASRL1::INSTR but not
VXI0::5::INSTR.

ASRL1+::INSTR Matches ASRL1::INSTR and ASRL11::INSTR

but not ASRL2::INSTR.

(GPIB|VXI)?*INSTR Matches GPIB1::5::INSTR and
VXI0::3::INSTR but not ASRL2::INSTR.

(GPIB0|VXI0)::1::INSTR Matches GPIB0::1::INSTR and
VXI0::1::INSTR.

?*INSTR Matches all INSTR (device) resources.

?*VXI[0-9]*::?*MEMACC Matches VXI0::MEMACC and
GPIB-VXI1::MEMACC.

VXI0::?* Matches VXI0::1::INSTR, VXI0::2::INSTR,
and VXI0::MEMACC.

?* Matches all resources.

Chapter 5 Operations

© National Instruments Corporation 5-33 NI-VISA Programmer Reference Manual

global attributes in the attribute expression. Local attributes are not allowed in the logical
expression part of the expr parameter.

Related Items
See the viClose() and viFindNext() descriptions in this chapter. Also see the VISA
Resource Template description in Appendix B, Resources.

Expr Parameter Meaning

GPIB[0-9]*::?*::?*::INSTR

{VI_ATTR_GPIB_SECONDARY_ADDR > 0 &&

VI_ATTR_GPIB_SECONDARY_ADDR < 10}

Find all GPIB devices that have
secondary addresses from 1 to 9.

ASRL?*INSTR{VI_ATTR_ASRL_BAUD == 9600} Find all serial ports configured at
9600 baud.

?*VXI?INSTR{VI_ATTR_MANF_ID ==

0xFF6 && !(VI_ATTR_VXI_LA ==0 ||

VI_ATTR_SLOT <= 0)}

Find all VXI instrument resources
having manufacturer ID FF6 and
which are not logical address 0,
slot 0, or external controllers.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-34 ni.com

viFlush

Purpose
Manually flushes the specified buffers associated with formatted I/O operations and/or serial
communication.

C Syntax
ViStatus viFlush(ViSession vi, ViUInt16 mask)

Visual Basic Syntax
viFlush&(ByVal vi&, ByVal mask%)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

mask IN Specifies the action to be taken with flushing the buffer.
Refer to the Description section for more information.

Completion Codes Description

VI_SUCCESS Buffers flushed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_IO Could not perform read/write operation because of
I/O error.

Chapter 5 Operations

© National Instruments Corporation 5-35 NI-VISA Programmer Reference Manual

Description
The value of mask can be one of the following flags.

It is possible to combine any of these read flags and write flags for different buffers by ORing
the flags. However, combining two flags for the same buffer in the same call to viFlush()

is illegal.

VI_ERROR_TMO The read/write operation was aborted because
timeout expired while operation was in progress.

VI_ERROR_INV_MASK The specified mask does not specify a valid flush
operation on read/write resource.

Flag Interpretation

VI_READ_BUF (1) Discard the read buffer contents. If data was
present in the read buffer and no END-indicator
was present, read from the device until
encountering an END indicator (which causes
the loss of data). This action resynchronizes the
next viScanf() call to read a <TERMINATED
RESPONSE MESSAGE>. (Refer to the IEEE
488.2 standard.)

VI_READ_BUF_DISCARD (4) Discard the read buffer contents (does not
perform any I/O to the device).

VI_WRITE_BUF (2) Flush the write buffer by writing all buffered
data to the device.

VI_WRITE_BUF_DISCARD (8) Discard the write buffer contents (does not
perform any I/O to the device).

VI_IO_IN_BUF (16) Discard the receive buffer contents (same as
VI_IO_IN_BUF_DISCARD).

VI_IO_IN_BUF_DISCARD (64) Discard the receive buffer contents (does not
perform any I/O to the device).

VI_IO_OUT_BUF (32) Flush the transmit buffer by writing all buffered
data to the device.

VI_IO_OUT_BUF_DISCARD (128) Discard the transmit buffer contents (does not
perform any I/O to the device).

Error Codes Description

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-36 ni.com

Notice that when using formatted I/O operations with a session to a Serial device or Ethernet
socket, a flush of the formatted I/O buffers also causes the corresponding I/O communication
buffers to be flushed. For example, calling viFlush() with VI_WRITE_BUF also flushes the
VI_IO_OUT_BUF.

In previous versions of VISA, VI_IO_IN_BUF was known as VI_ASRL_IN_BUF and
VI_IO_OUT_BUF was known as VI_ASRL_OUT_BUF.

Implicit vs. Explicit Flushing
Although you can explicitly flush the buffers by making a call to viFlush(), the buffers are
flushed implicitly under some conditions. These conditions vary for the viPrintf() and
viScanf() operations.

Flushing a write buffer immediately sends any queued data to the device. The write buffer is
maintained by the viPrintf() operation. To explicitly flush the write buffer, you can make
a call to the viFlush() operation with a write flag set. In addition, the write buffer is flushed
automatically under the following conditions:

• When an END-indicator character is sent (that is, the \n character is specified in the
formatting string).

• When the buffer is full.

• In response to a call to viSetBuf() with the VI_WRITE_BUF flag set.

Flushing a read buffer discards the data in the read buffer. This guarantees that the next call
to a viScanf() (or related) operation reads data directly from the device rather than from
queued data residing in the read buffer. The read buffer is maintained by the viScanf()
operation. To explicitly flush the read buffer, you can make a call to the viFlush() operation
with a read flag set.

Also, the formatted I/O buffers of a session to a given device are reset whenever that device
is cleared. Invoking the viClear() operation will flush the read buffer and discard the
contents of the write buffers.

Related Items
See the viSetBuf() description in this chapter. Also see the INTFC Resource, INSTR
Resource, SERVANT Resource, and SOCKET Resource descriptions in Appendix B,
Resources.

Chapter 5 Operations

© National Instruments Corporation 5-37 NI-VISA Programmer Reference Manual

viGetAttribute

Purpose
Retrieves the state of an attribute.

C Syntax
ViStatus viGetAttribute(ViObject vi, ViAttr attribute,

void * attrState)

Visual Basic Syntax
viGetAttribute&(ByVal vi&, ByVal attribute&, attrState as Any)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session, event, or find list.

attribute IN Resource attribute for which the state query is made.

attrState OUT The state of the queried attribute for a specified resource.
The interpretation of the returned value is defined by the
individual object.

Completion Codes Description

VI_SUCCESS Attribute retrieved successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the
referenced object.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-38 ni.com

Description
The viGetAttribute() operation is used to retrieve the state of an attribute for the
specified session, event, or find list.

The output parameter attrState is of the type of the attribute actually being retrieved. For
example, when retrieving an attribute that is defined as a ViBoolean, your application should
pass a reference to a variable of type ViBoolean. Similarly, if the attribute is defined as being
ViUInt32, your application should pass a reference to a variable of type ViUInt32.

Related Items
See the viSetAttribute() description in this chapter. Also see the VISA Resource
Template description in Appendix B, Resources, and the attribute descriptions in Chapter 3,
Attributes.

Chapter 5 Operations

© National Instruments Corporation 5-39 NI-VISA Programmer Reference Manual

viGpibCommand

Purpose
Write GPIB command bytes on the bus.

C Syntax
ViStatus viGpibCommand(ViSession vi, ViBuf buf, ViUInt32 count,

ViPUInt32 retCount)

Visual Basic Syntax
viGpibCommand&(ByVal vi&, ByVal buf$, ByVal count&, retCount&)

Resource Classes
GPIB INTFC

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

buf IN Buffer containing valid GPIB commands.

count IN Number of bytes to be written.

retCount OUT Number of bytes actually transferred.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-40 ni.com

Description
This operation attempts to write count number of bytes of GPIB commands to the interface
bus specified by vi. This operation is valid only on GPIB INTFC (interface) sessions. This
operation returns only when the transfer terminates.

If you pass VI_NULL as the retCount parameter to the viGpibCommand() operation, the
number of bytes transferred will not be returned. This may be useful if it is important to know
only whether the operation succeeded or failed. The command bytes contained in buf should
be valid IEEE 488-defined Multiline Interface Messages.

Related Items
See the INTFC Resource description in Appendix B, Resources.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_INV_SETUP Unable to start write operation because setup is
invalid (due to attributes being set to an inconsistent
state).

VI_ERROR_NCIC The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and
NDAC are deasserted).

VI_ERROR_IO An unknown I/O error occurred during transfer.

Error Codes Description

Chapter 5 Operations

© National Instruments Corporation 5-41 NI-VISA Programmer Reference Manual

viGpibControlATN

Purpose

Specifies the state of the ATN line and the local active controller state.

C Syntax
ViStatus viGpibControlATN(ViSession vi, ViUInt16 mode)

Visual Basic Syntax
viGpibControlATN&(ByVal vi&, ByVal mode%)

Resource Classes
GPIB INTFC

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

mode IN Specifies the state of the ATN line and optionally the local
active controller state. See the Description section for
actual values.

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-42 ni.com

Description
This operation asserts or deasserts the GPIB ATN interface line according to the specified
mode. The mode can also specify whether the local interface should acquire or release
Controller Active status. This operation is valid only on GPIB INTFC (interface) sessions.
The following table lists valid values for the mode parameter.

It is generally not necessary to use the viGpibControlATN() operation in most
applications. Other operations such as viGpibCommand() and viGpibPassControl()

modify the ATN and/or CIC state automatically.

VI_ERROR_NCIC The interface associated with this session is not
currently the controller in charge.

VI_ERROR_INV_MODE The value specified by the mode parameter is
invalid.

VI_ERROR_NSUP_MODE The specified mode is not supported by this VISA
implementation.

Mode Action Description

VI_GPIB_ATN_DEASSERT Deassert ATN line. The GPIB interface
corresponding to the VISA session goes to
standby.

VI_GPIB_ATN_ASSERT Assert ATN line and take control
synchronously without corrupting
transferred data. If a data handshake is in
progress, ATN is not asserted until the
handshake is complete.

VI_GPIB_ATN_DEASSERT_HANDSHAKE Deassert ATN line, and enter shadow
handshake mode. The local board
participates in data handshakes as an
Acceptor without actually reading the data.
The GPIB interface corresponding to the
VISA session goes to standby.

VI_GPIB_ATN_ASSERT_IMMEDIATE Assert ATN line and take control
asynchronously and immediately without
regard for any data transfer currently in
progress. Generally, this should be used only
under error conditions.

Error Codes Description

Chapter 5 Operations

© National Instruments Corporation 5-43 NI-VISA Programmer Reference Manual

Related Items
See the viGpibControlREN() description in this chapter. Also see the INTFC Resource
description in Appendix B, Resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-44 ni.com

viGpibControlREN

Purpose
Controls the state of the GPIB Remote Enable (REN) interface line, and optionally the
remote/local state of the device.

C Syntax
ViStatus viGpibControlREN(ViSession vi, ViUInt16 mode)

Visual Basic Syntax
viGpibControlREN&(ByVal vi&, ByVal mode%)

Resource Classes
GPIB INSTR, GPIB INTFC

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

mode IN Specifies the state of the REN line and optionally the
device remote/local state. See the Description section for
actual values.

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

Chapter 5 Operations

© National Instruments Corporation 5-45 NI-VISA Programmer Reference Manual

Description
The viGpibControlREN() operation asserts or unasserts the GPIB REN interface line
according to the specified mode. The mode can also specify whether the device associated
with this session should be placed in local state (before deasserting REN) or remote state
(after asserting REN). This operation is valid only if the GPIB interface associated with the
session specified by vi is currently the system controller.

The following table lists special values for the mode parameter.

Related Items
See the viGpibControlATN() description in this chapter. Also see the INSTR Resource and
INTFC Resource descriptions in Appendix B, Resources.

VI_ERROR_NCIC The interface associated with this session is not
currently the controller in charge.

VI_ERROR_NLISTENERS No-listeners condition is detected (both NRFD and
NDAC are unasserted).

VI_ERROR_NSYS_CNTLR The interface associated with this session is not the
system controller.

VI_ERROR_INV_MODE The value specified by the mode parameter is
invalid.

Value Description

VI_GPIB_REN_DEASSERT Deassert REN line.

VI_GPIB_REN_ASSERT Assert REN line.

VI_GPIB_REN_DEASSERT_GTL Send the Go To Local (GTL) command and
deassert REN line.

VI_GPIB_REN_ASSERT_ADDRESS Assert REN line and address device.

VI_GPIB_REN_ASSERT_LLO Send LLO to any devices that are addressed
to listen.

VI_GPIB_REN_ASSERT_ADDRESS_LLO Address this device and send it LLO,
putting it in RWLS.

VI_GPIB_REN_ADDRESS_GTL Send the Go To Local command (GTL) to
this device.

Error Codes Description

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-46 ni.com

viGpibPassControl

Purpose

Tell the GPIB device at the specified address to become controller in charge (CIC).

C Syntax
ViStatus viGpibPassControl(ViSession vi, ViUInt16 primAddr,

ViUInt16 secAddr)

Visual Basic Syntax
viGPIBPassControl& (ByVal vi&, ByVal primAddr%, ByValsec Addr%)

Resource Classes
GPIB INTFC

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

primAddr IN Primary address of the GPIB device to which you want to
pass control.

secAddr IN Secondary address of the targeted GPIB device. If the
targeted device does not have a secondary address, this
parameter should contain the value VI_NO_SEC_ADDR.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Chapter 5 Operations

© National Instruments Corporation 5-47 NI-VISA Programmer Reference Manual

Description
This operation passes controller in charge status to the device indicated by primAddr and
secAddr, and then deasserts the ATN line. This operation assumes that the targeted device has
controller capability. This operation is valid only on GPIB INTFC (interface) sessions.

Related Items
See the INTFC Resource description in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_NCIC The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and
NDAC are deasserted).

VI_ERROR_IO An unknown I/O error occurred during transfer.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-48 ni.com

viGpibSendIFC

Purpose

Pulse the interface clear line (IFC) for at least 100 microseconds.

C Syntax
ViStatus viGpibSendIFC(ViSession vi)

Visual Basic Syntax
viGpibSendIFC&(ByVal vi&)

Resource Classes
GPIB INTFC

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_NSYS_CNTLR The interface associated with this session is not the
system controller.

Chapter 5 Operations

© National Instruments Corporation 5-49 NI-VISA Programmer Reference Manual

Description

This operation asserts the IFC line and becomes controller in charge (CIC). The local board
must be the system controller. This operation is valid only on GPIB INTFC (interface)
sessions.

Related Items
See the INTFC Resource description in Appendix B, Resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-50 ni.com

viIn8/viIn16/viIn32

Purpose
Reads in an 8-bit, 16-bit, or 32-bit value from the specified memory space and offset.

C Syntax
ViStatus viIn8(ViSession vi, ViUInt16 space, ViBusAddress offset,

ViPUInt8 val8)

ViStatus viIn16(ViSession vi, ViUInt16 space, ViBusAddress offset,

ViPUInt16 val16)

ViStatus viIn32(ViSession vi, ViUInt16 space, ViBusAddress offset,

ViPUInt32 val32)

Visual Basic Syntax
viIn8&(ByVal vi&, ByVal space%, ByVal offset&, val8 as Byte)

viIn16&(ByVal vi&, ByVal space%, ByVal offset&, val16%)

viIn32&(ByVal vi&, ByVal space%, ByVal offset&, val32&)

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Parameters

Name Direction Description

vi IN Unique logical identifier to a session.

space IN Specifies the address space. Refer to the table included in
the Description section for more information.

offset IN Offset (in bytes) of the address or register from which to
read.

val8, val16,
or val32

OUT Data read from bus—8 bits for viIn8(), 16 bits for
viIn16(), and 32 bits for viIn32().

Chapter 5 Operations

© National Instruments Corporation 5-51 NI-VISA Programmer Reference Manual

Return Values

Description
The viInXX() operations use the specified address space to read in 8, 16, or 32 bits of data,
respectively, from the specified offset. These operations do not require viMapAddress() to
be called prior to their invocation.

The following table lists the valid entries for specifying address space.

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this
hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-52 ni.com

INSTR Specific
Notice that offset specified in the viIn8(), viIn16(), and viIn32() operations for
an INSTR Resource is the offset address relative to the device’s allocated address base
for the corresponding address space that was specified. For example, if space specifies
VI_A16_SPACE, then offset specifies the offset from the logical address base address of
the specified VXI device. If space specifies VI_A24_SPACE or VI_A32_SPACE, then offset
specifies the offset from the base address of the VXI device’s memory space allocated by
the VXI Resource Manager within VXI A24 or A32 space.

MEMACC Specific
For a MEMACC Resource, the offset parameter specifies an absolute address.

Related Items
See the viOut8/viOut16/viOut32() descriptions in this chapter. Also see the INSTR
Resource and MEMACC Resource descriptions in Appendix B, Resources.

Value Description

VXI, VME, and
GPIB-VXI

VI_A16_SPACE (1)

VI_A24_SPACE (2)

VI_A32_SPACE (3)

PXI VI_PXI_CFG_SPACE (10)

VI_PXI_BAR0_SPACE (11) to VI_PXI_BAR5_SPACE (16)

Chapter 5 Operations

© National Instruments Corporation 5-53 NI-VISA Programmer Reference Manual

viInstallHandler

Purpose
Installs handlers for event callbacks.

C Syntax
ViStatus viInstallHandler(ViSession vi, ViEventType eventType,

ViHndlr handler, ViAddr userHandle)

Visual Basic Syntax
N/A

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

handler IN Interpreted as a valid reference to a handler to be installed
by a client application.

userHandle IN A value specified by an application that can be used for
identifying handlers uniquely for an event type.

Completion Codes Description

VI_SUCCESS Event handler installed successfully.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-54 ni.com

Description
The viInstallHandler() operation allows applications to install handlers on sessions.
The handler specified in the handler parameter is installed along with any previously
installed handlers for the specified event. Applications can specify a value in the userHandle
parameter that is passed to the handler on its invocation. VISA identifies handlers uniquely
using the handler reference and this value.

VISA allows applications to install multiple handlers for an eventType on the same
session. You can install multiple handlers through multiple invocations of the
viInstallHandler() operation, where each invocation adds to the previous list of
handlers. If more than one handler is installed for an eventType, each of the handlers is
invoked on every occurrence of the specified event(s). VISA specifies that the handlers
are invoked in Last In First Out (LIFO) order.

Related Items
See the viEventHandler(), viEnableEvent(), and viUninstallHandler()

descriptions. Also see the VISA Resource Template description in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_INV_EVENT Specified eventType is not supported by the
resource.

VI_ERROR_INV_HNDLR_REF The given handler reference is invalid.

VI_ERROR_HNDLR_NINSTALLED The handler was not installed. This may be returned
if an application attempts to install multiple
handlers for the same event on the same session.

Chapter 5 Operations

© National Instruments Corporation 5-55 NI-VISA Programmer Reference Manual

viLock

Purpose
Establishes an access mode to the specified resource.

C Syntax
ViStatus viLock(ViSession vi, ViAccessMode lockType,

ViUInt32 timeout, ViKeyId requestedKey, ViChar accesskey[])

Visual Basic Syntax
viLock&(ByVal vi&, ByVal lockType&, ByVal timeout&,

ByVal requestedKey$, ByVal accesskey$)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Name Direction Description

vi IN Unique logical identifier to a session.

lockType IN Specifies the type of lock requested, either
VI_EXCLUSIVE_LOCK (1) or VI_SHARED_LOCK (2).

timeout IN Absolute time period (in milliseconds) that a resource
waits to get unlocked by the locking session before
returning an error.

requestedKey IN This parameter is not used and should be set to VI_NULL

when lockType is VI_EXCLUSIVE_LOCK. See the
Description section for more details about using
VI_SHARED_LOCK.

accessKey OUT This parameter should be set to VI_NULL when lockType
is VI_EXCLUSIVE_LOCK. When lockType is
VI_SHARED_LOCK, the resource returns a unique access
key for the lock if the operation succeeds. This accessKey
can then be passed to other sessions to share the lock.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-56 ni.com

Return Values

Description
This operation is used to obtain a lock on the specified resource. The caller can specify the
type of lock requested—exclusive or shared lock—and the length of time the operation will
suspend while waiting to acquire the lock before timing out. This operation can also be used
for sharing and nesting locks.

The requestedKey and the accessKey parameters apply only to shared locks. These
parameters are not applicable when using the lock type VI_EXCLUSIVE_LOCK; in this case,
requestedKey and accessKey should be set to VI_NULL. VISA allows user applications to
specify a key to be used for lock sharing, through the use of the requestedKey parameter.
Alternatively, a user application can pass VI_NULL for the requestedKey parameter when
obtaining a shared lock, in which case VISA will generate a unique access key and return it
through the accessKey parameter. If a user application does specify a requestedKey value,
VISA will try to use this value for the accessKey. As long as the resource is not locked, VISA

Completion Codes Description

VI_SUCCESS Specified access mode was acquired.

VI_SUCCESS_NESTED_EXCLUSIVE Specified access mode is successfully acquired,
and this session has nested exclusive locks.

VI_SUCCESS_NESTED_SHARED Specified access mode is successfully acquired,
and this session has nested shared locks.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_RSRC_LOCKED Specified lockType cannot be obtained because
the resource is already locked with a lock type
incompatible with the lock requested.

VI_ERROR_INV_LOCK_TYPE Specified lockType is not supported by this
resource.

VI_ERROR_INV_ACCESS_KEY The requestedKey value passed in is not a valid
accessKey to the specified resource.

VI_ERROR_TMO Specified lockType could not be obtained within
the specified timeout period.

Chapter 5 Operations

© National Instruments Corporation 5-57 NI-VISA Programmer Reference Manual

will use the requestedKey as the access key and grant the lock. When the operation succeeds,
the requestedKey will be copied into the user buffer referred to by the accessKey parameter.

Note If requesting a VI_SHARED_LOCK, the size of the accessKey parameter should be at
least 256 bytes.

The session that gained a shared lock can pass the accessKey to other sessions for the purpose
of sharing the lock. The session wanting to join the group of sessions sharing the lock can use
the key as an input value to the requestedKey parameter. VISA will add the session to the list
of sessions sharing the lock, as long as the requestedKey value matches the accessKey value
for the particular resource. The session obtaining a shared lock in this manner will then have
the same access privileges as the original session that obtained the lock.

It is also possible to obtain nested locks through this operation. To acquire nested locks,
invoke the viLock() operation with the same lock type as the previous invocation of this
operation. For each session, viLock() and viUnlock() share a lock count, which is
initialized to 0. Each invocation of viLock() for the same session (and for the same
lockType) increases the lock count. In the case of a shared lock, it returns with the same
accessKey every time. When a session locks the resource a multiple number of times, it is
necessary to invoke the viUnlock() operation an equal number of times in order to unlock
the resource. That is, the lock count increments for each invocation of viLock(), and
decrements for each invocation of viUnlock(). A resource is actually unlocked only when
the lock count is 0.

The VISA locking mechanism enforces arbitration of accesses to resources on an individual
basis. If a session locks a resource, operations invoked by other sessions to the same resource
are serviced or returned with a locking error, depending on the operation and the type of lock
used. If a session has an exclusive lock, other sessions cannot modify global attributes or
invoke operations, but can still get attributes and set local attributes. If the session has a shared
lock, other sessions that have shared locks can also modify global attributes and invoke
operations. Regardless of which type of lock a session has, if the session is closed without
first being unlocked, VISA automatically performs a viUnlock() on that session.

The locking mechanism works for all processes and resources existing on the same computer.
When using remote resources, however, the networking protocol may not provide the ability
to pass lock requests to the remote device or resource. In this case, locks will behave as
expected from multiple sessions on the same computer, but not necessarily on the remote
device. For example, when using the VXI-11 protocol, exclusive lock requests can be sent
to a device, but shared locks can only be handled locally.

Related Items
See the viUnlock() description in this chapter. Also see the VISA Resource Template
description in Appendix B, Resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-58 ni.com

viMapAddress

Purpose
Maps the specified memory space into the process’s address space.

C Syntax
ViStatus viMapAddress(ViSession vi, ViUInt16 mapSpace,

ViBusAddress mapBase, ViBusSize mapSize, ViBoolean access,

ViAddr suggested, ViPAddr address)

Visual Basic Syntax
viMapAddress&(ByVal vi&, ByVal mapSpace%, ByVal mapBase&,

ByVal mapSize&, ByVal access%, ByVal suggested&, address&)

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Parameters

Name Direction Description

vi IN Unique logical identifier to a session.

mapSpace IN Specifies the address space to map. Refer to the
Description section for more information.

mapBase IN Offset (in bytes) of the memory to be mapped. Refer to the
Description section for more information.

mapSize IN Amount of memory to map (in bytes).

access IN VI_FALSE (0).

suggested IN If suggested parameter is not VI_NULL (0), the operating
system attempts to map the memory to the address
specified in suggested. There is no guarantee, however,
that the memory will be mapped to that address. This
operation may map the memory into an address region
different from suggested.

address OUT Address in your process space where the memory was
mapped.

Chapter 5 Operations

© National Instruments Corporation 5-59 NI-VISA Programmer Reference Manual

Return Values

Description
The viMapAddress() operation maps in a specified memory space. The memory space
that is mapped is dependent on the type of interface specified by the vi parameter and the
mapSpace parameter. The address parameter returns the address in your process space
where memory is mapped. The following table lists the valid entries for the mapSpace
parameter.

Completion Codes Description

VI_SUCCESS Mapping successful.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified region is not accessible from this
hardware.

VI_ERROR_TMO viMapAddress() could not acquire resource or
perform mapping before the timer expired.

VI_ERROR_INV_SIZE Invalid size of window specified.

VI_ERROR_ALLOC Unable to allocate window of at least the requested
size.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_WINDOW_MAPPED The specified session already contains a mapped
window.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-60 ni.com

INSTR Specific
Notice that mapBase specified in the viMapAddress() operation for an INSTR Resource is
the offset address relative to the device’s allocated address base for the corresponding address
space that was specified. For example, if mapSpace specifies VI_A16_SPACE, then
mapBase specifies the offset from the logical address base address of the specified VXI
device. If mapSpace specifies VI_A24_SPACE or VI_A32_SPACE, then mapBase specifies
the offset from the base address of the VXI device’s memory space allocated by the VXI
Resource Manager within VXI A24 or A32 space.

MEMACC Specific
For a MEMACC Resource, the mapBase parameter specifies an absolute address.

Related Items
See the viUnmapAddress() description in this chapter. Also see the INSTR Resource and
MEMACC Resource descriptions in Appendix B, Resources.

Value Description

VXI, VME, and
GPIB-VXI

VI_A16_SPACE (1)

VI_A24_SPACE (2)

VI_A32_SPACE (3)

PXI VI_PXI_CFG_SPACE (10)

VI_PXI_BAR0_SPACE (11) to VI_PXI_BAR5_SPACE (16)

Chapter 5 Operations

© National Instruments Corporation 5-61 NI-VISA Programmer Reference Manual

viMapTrigger

Purpose

Map the specified trigger source line to the specified destination line.

C Syntax
viStatus viMapTrigger(ViSession vi, ViInt16 trigSrc,

ViInt16 trigDest,ViUInt16 mode)

Visual Basic Syntax
viMapTrigger&(ByVal vi&, ByVal trigSrc%, ByVal trigDest%,
ByVal mode%)

Resource Classes
GPIB-VXI BACKPLANE, VXI BACKPLANE

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

trigSrc IN Source line from which to map. See the Description
section for actual values.

trigDest IN Destination line to which to map. See the Description
section for actual values.

mode IN VI_NULL

Completion Code Description

VI_SUCCESS Operation completed successfully.

VI_SUCCESS_TRIG_MAPPED The path from trigSrc to trigDest is already
mapped.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-62 ni.com

Description
This operation can be used to map one trigger line to another. This operation is valid only on
BACKPLANE (mainframe) sessions.

Special Values for trigSrc and trigDest Parameters

If this operation is called multiple times on the same BACKPLANE Resource with the same
source trigger line and different destination trigger lines, the result will be that when the
source trigger line is asserted, all of the specified destination trigger lines will also be asserted.
If this operation is called multiple times on the same BACKPLANE Resource with different

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_INV_MODE The value specified by the mode parameter is
invalid.

VI_ERROR_LINE_IN_USE One of the specified lines (trigSrc or trigDest) is
currently in use.

VI_ERROR_INV_LINE One of the specified lines (trigSrc or trigDest) is
invalid.

VI_ERROR_NSUP_LINE One of the specified lines (trigSrc or trigDest) is
not supported by this VISA implementation.

Value Action Description

VI_TRIG_TTL0 –

VI_TRIG_TTL7

Map the specified VXI TTL trigger line.

VI_TRIG_ECL0 –

VI_TRIG_ECL1

Map the specified VXI ECL trigger line.

VI_TRIG_PANEL_IN Map the controller's front panel trigger input line.

VI_TRIG_PANEL_OUT Map the controller's front panel trigger output line.

Chapter 5 Operations

© National Instruments Corporation 5-63 NI-VISA Programmer Reference Manual

source trigger lines and the same destination trigger line, the result will be that when any of
the specified source trigger lines are asserted, the destination trigger line will also be asserted.

Note Mapping a trigger line (as either source or destination) multiple times requires
special hardware capabilities and is not guaranteed to be implemented.

Related Items

See the BACKPLANE Resource description in Appendix B, Resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-64 ni.com

viMemAlloc

Purpose
Allocates memory from a device’s memory region.

C Syntax
ViStatus viMemAlloc(ViSession vi, ViBusSize size,

ViPBusAddress offset)

Visual Basic Syntax
viMemAlloc&(ByVal vi&, ByVal size&, offset&)

Resource Classes
GPIB-VXI INSTR, VXI INSTR

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

size IN Specifies the size of the allocation.

offset OUT Returns the offset of the allocated device memory.

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_SIZE Invalid size specified.

Chapter 5 Operations

© National Instruments Corporation 5-65 NI-VISA Programmer Reference Manual

Description
The viMemAlloc() operation returns an offset into a device’s memory region that has been
allocated for use by this session. If the device to which the given vi refers is located on the
local interface card, the memory can be allocated either on the device itself or on the
computer’s system memory.

The memory region referenced by the offset that is returned from this operation can be
accessed with the high-level operations viMoveInXX() and viMoveOutXX(), or it can be
mapped using viMapAddress().

Related Items
See the viMapAddress(), viMemFree(), viMoveIn8/viMoveIn16/viMoveIn32(),
and viMoveOut8/viMoveOut16/viMoveOut32() descriptions in this chapter. Also see
the INSTR Resource description in Appendix B, Resources.

VI_ERROR_ALLOC Unable to allocate shared memory block of the
requested size.

VI_ERROR_MEM_NSHARED The device does not export any memory.

Error Codes Description

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-66 ni.com

viMemFree

Purpose
Frees memory previously allocated using the viMemAlloc() operation.

C Syntax
ViStatus viMemFree(ViSession vi, ViBusAddress offset)

Visual Basic Syntax
viMemFree&(ByVal vi&, ByVal offset&)

Resource Classes
GPIB-VXI INSTR, VXI INSTR

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

offset IN Specifies the memory previously allocated with
viMemAlloc().

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_WINDOW_MAPPED The specified offset is currently in use by
viMapAddress().

Chapter 5 Operations

© National Instruments Corporation 5-67 NI-VISA Programmer Reference Manual

Description
The viMemFree() operation frees the memory previously allocated using viMemAlloc().
If the specified offset has been mapped using viMapAddress(), it must be unmapped before
it can be freed.

Related Items
See the viMapAddress(), viMemAlloc(), and viUnmapAddress() descriptions in this
chapter. Also see the INSTR Resource description in Appendix B, Resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-68 ni.com

viMove

Purpose
Moves a block of data.

C Syntax
ViStatus viMove(ViSession vi, ViUInt16 srcSpace,

ViBusAddress srcOffset, ViUInt16 srcWidth, ViUInt16 destSpace,

ViBusAddress destOffset, ViUInt16 destWidth, ViBusSize length)

Visual Basic Syntax
viMove&(ByVal vi&, ByVal srcSpace%, ByVal srcOffset&, ByVal srcWidth%,

ByVal destSpace%, ByVal destOffset&, ByVal destWidth%, ByVal length&)

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Parameters

Name Direction Description

vi IN Unique logical identifier to a session.

srcSpace IN Specifies the address space of the source.

srcOffset IN Offset of the starting address or register from which to
read.

srcWidth IN Specifies the data width of the source.

destSpace IN Specifies the address space of the destination.

destOffset IN Offset of the starting address or register to which to write.

destWidth IN Specifies the data width of the destination.

length IN Number of elements to transfer, where the data width of
the elements to transfer is identical to the source data
width.

Chapter 5 Operations

© National Instruments Corporation 5-69 NI-VISA Programmer Reference Manual

Return Values

Description
The viMove() operation moves data from the specified source to the specified destination.
The source and the destination can either be local memory or the offset of the interface with
which this MEMACC Resource is associated. This operation uses the specified data width
and address space. In some systems, such as VXI, users can specify additional settings for the
transfer, such as byte order and access privilege, by manipulating the appropriate attributes.

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid source or destSpace specified.

VI_ERROR_INV_OFFSET Invalid source or destWidth specified.

VI_ERROR_INV_WIDTH Invalid source or destWidth specified.

VI_ERROR_NSUP_OFFSET Specified source or destination offset is not
accessible from this hardware.

VI_ERROR_NSUP_VAR_WIDTH Cannot support source and destination widths that
are different.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_INV_LENGTH Invalid length specified.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-70 ni.com

The following table lists the valid entries for specifying address space.

The following table lists the valid entries for specifying widths.

INSTR Specific
If srcSpace is not VI_LOCAL_SPACE, then srcOffset is a relative address of the device
associated with the given INSTR Resource. Similarly, if destSpace is not VI_LOCAL_SPACE,
then destOffset is a relative address of the device associated with the given INSTR Resource.

The primary intended use of this operation with an INSTR session is to synchronously move
data to or from the device. Therefore, either the srcSpace or destSpace parameter will usually
be VI_LOCAL_SPACE.

MEMACC Specific
The destOffset and srcOffset parameters specify absolute addresses. Notice also that
the length specified in the viMove() operation is the number of elements (of the size
corresponding to the srcWidth parameter) to transfer, beginning at the specified offsets.
Therefore, srcOffset + length*srcWidth cannot exceed the total amount of memory
exported by the given srcSpace. Similarly, destOffset + length*srcWidth cannot exceed
the total amount of memory exported by the given destSpace.

Related Items
See the viMoveAsync() description in this chapter and the VI_ATTR_DEST_INCREMENT
and VI_ATTR_SRC_INCREMENT descriptions in Chapter 3, Attributes. Also see the INSTR
Resource and MEMACC Resource descriptions in Appendix B, Resources.

Value Description

VI_A16_SPACE (1) Address the A16 address space of the VXI/MXI bus.

VI_A24_SPACE (2) Address the A24 address space of the VXI/MXI bus.

VI_A32_SPACE (3) Address the A32 address space of the VXI/MXI bus.

VI_LOCAL_SPACE (0) Address process-local memory (using a virtual address).

Value Description

VI_WIDTH_8 (1) Performs 8-bit (D08) transfers.

VI_WIDTH_16 (2) Performs 16-bit (D16) transfers.

VI_WIDTH_32 (4) Performs 32-bit (D32) transfers.

Chapter 5 Operations

© National Instruments Corporation 5-71 NI-VISA Programmer Reference Manual

viMoveAsync

Purpose
Moves a block of data asynchronously.

C Syntax
ViStatus viMoveAsync(ViSession vi, ViUInt16 srcSpace,

ViBusAddress srcOffset, ViUInt16 srcWidth, ViUInt16 destSpace,

ViBusAddress destOffset, ViUInt16 destWidth, ViBusSize length,

ViPJobId jobId)

Visual Basic Syntax
N/A

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Parameters

Name Direction Description

vi IN Unique logical identifier to a session.

srcSpace IN Specifies the address space of the source.

srcOffset IN Offset of the starting address or register from which to
read.

srcWidth IN Specifies the data width of the source.

destSpace IN Specifies the address space of the destination.

destOffset IN Offset of the starting address or register to which to write.

destWidth IN Specifies the data width of the destination.

length IN Number of elements to transfer, where the data width of
the elements to transfer is identical to the source data
width.

jobId OUT Job identifier of this asynchronous move operation.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-72 ni.com

Return Values

Description
The viMoveAsync() operation asynchronously moves data from the specified source to
the specified destination. This operation queues up the transfer in the system, then it returns
immediately without waiting for the transfer to carry out or complete. When the transfer
terminates, a VI_EVENT_IO_COMPLETION event is generated, which indicates the status
of the transfer.

This operation returns jobId, which you can use either with viTerminate() to abort the
operation or with VI_EVENT_IO_COMPLETION events to identify which asynchronous move
operations completed. VISA will never return VI_NULL for a valid jobId.

The source and the destination can either be local memory or the offset of the interface with
which this INSTR or MEMACC Resource is associated. This operation uses the specified
data width and address space. In some systems, such as VXI, users can specify additional
settings for the transfer, such as byte order and access privilege, by manipulating the
appropriate attributes.

Completion Codes Description

VI_SUCCESS Asynchronous operation successfully queued.

VI_SUCCESS_SYNC Operation performed synchronously.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_QUEUE_ERROR Unable to queue move operation.

VI_ERROR_IN_PROGRESS Unable to queue the asynchronous operation
because there is already an operation in progress.

Chapter 5 Operations

© National Instruments Corporation 5-73 NI-VISA Programmer Reference Manual

The following table lists the valid entries for specifying address space.

The following table lists the valid entries for specifying widths.

INSTR Specific
If srcSpace is not VI_LOCAL_SPACE, then srcOffset is a relative address of the device
associated with the given INSTR Resource. Similarly, if destSpace is not VI_LOCAL_SPACE,
then destOffset is a relative address of the device associated with the given INSTR Resource.

The primary intended use of this operation with an INSTR session is to asynchronously move
data to or from the device. Therefore, either the srcSpace or destSpace parameter will usually
be VI_LOCAL_SPACE.

MEMACC Specific
The destOffset and srcOffset parameters specify absolute addresses. Notice also that the
length specified in the viMoveAsync() operation is the number of elements (of the size
corresponding to the srcWidth parameter) to transfer, beginning at the specified offsets.
Therefore, srcOffset + length*srcWidth cannot exceed the total amount of memory
exported by the given srcSpace. Similarly, destOffset + length*srcWidth cannot exceed
the total amount of memory exported by the given destSpace.

Related Items
See the viMove() description in this chapter and the VI_ATTR_DEST_INCREMENT
and VI_ATTR_SRC_INCREMENT descriptions in Chapter 3, Attributes. Aslo see the
VI_EVENT_IO_COMPLETION description in Chapter 4, Events, and see the INSTR Resource
and MEMACC Resource descriptions in Appendix B, Resources.

Value Description

VI_A16_SPACE (1) Address the A16 address space of the VXI/MXI bus.

VI_A24_SPACE (2) Address the A24 address space of the VXI/MXI bus.

VI_A32_SPACE (3) Address the A32 address space of the VXI/MXI bus.

VI_LOCAL_SPACE (0) Address process-local memory (using a virtual address).

Value Description

VI_WIDTH_8 (1) Performs 8-bit (D08) transfers.

VI_WIDTH_16 (2) Performs 16-bit (D16) transfers.

VI_WIDTH_32 (4) Performs 32-bit (D32) transfers.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-74 ni.com

viMoveIn8/viMoveIn16/viMoveIn32

Purpose
Moves a block of data from the specified address space and offset to local memory.

C Syntax
ViStatus viMoveIn8(ViSession vi, ViUInt16 space, ViBusAddress offset,

ViBusSize length, ViAUInt8 buf8)

ViStatus viMoveIn16(ViSession vi, ViUInt16 space,

ViBusAddress offset, ViBusSize length, ViAUInt16 buf16)

ViStatus viMoveIn32(ViSession vi, ViUInt16 space,

ViBusAddress offset, ViBusSize length, ViAUInt32 buf32)

Visual Basic Syntax
viMoveIn8&(ByVal vi&, ByVal space%, ByVal offset&, ByVal length&,

buf8 as Byte)

viMoveIn16&(ByVal vi&, ByVal space%, ByVal offset&, ByVal length&,

buf16%)

viMoveIn32&(ByVal vi&, ByVal space%, ByVal offset&, ByVal length&,

buf32&)

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Parameters

Name Direction Description

vi IN Unique logical identifier to a session.

space IN Specifies the address space. Refer to the table included in
the Description section.

offset IN Offset (in bytes) of the starting address to read.

length IN Number of elements to transfer, where the data width of
the elements to transfer is identical to data width (8, 16,
or 32 bits).

buf8, buf16,
or buf32

OUT Data read from bus—8 bits for viMoveIn8(), 16 bits for
viMoveIn16(), and 32 bits for viMoveIn32().

Chapter 5 Operations

© National Instruments Corporation 5-75 NI-VISA Programmer Reference Manual

Return Values

Description
The viMoveInXX() operations use the specified address space to read in 8, 16, or 32 bits
of data, respectively, from the specified offset. These operations do not require
viMapAddress() to be called prior to their invocation.

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this
hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_INV_LENGTH Invalid length specified.

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-76 ni.com

The following table lists the valid entries for specifying address space.

INSTR Specific
Notice that offset specified in the viMoveIn8(), viMoveIn16(), and viMoveIn32()

operations for an INSTR Resource is the offset address relative to the device’s allocated
address base for the corresponding address space that was specified. For example, if space
specifies VI_A16_SPACE, then offset specifies the offset from the logical address base
address of the specified VXI device. If space specifies VI_A24_SPACE or VI_A32_SPACE,
then offset specifies the offset from the base address of the VXI device’s memory space
allocated by the VXI Resource Manager within VXI A24 or A32 space.

Notice also that the length specified in the viMoveInXX() operations for an INSTR
Resource is the number of elements (of the size corresponding to the operation) to transfer,
beginning at the specified offset. Therefore, offset + length*size cannot exceed the amount
of memory exported by the device in the given space.

MEMACC Specific
For a MEMACC Resource, the offset parameter specifies an absolute address.

Notice also that the length specified in the viMoveInXX() operations for a MEMACC
Resource is the number of elements (of the size corresponding to the operation) to transfer,
beginning at the specified offset. Therefore, offset + length*size cannot exceed the total
amount of memory available in the given space.

Related Items
See the viMoveOut8/viMoveOut16/viMoveOut32() descriptions in this chapter, and see
the VI_ATTR_DEST_INCREMENT description in Chapter 3, Attributes. Also see the INSTR
Resource and MEMACC Resource descriptions in Appendix B, Resources.

Value Description

VXI, VME, and
GPIB-VXI

VI_A16_SPACE (1)

VI_A24_SPACE (2)

VI_A32_SPACE (3)

PXI VI_PXI_CFG_SPACE (10)

VI_PXI_BAR0_SPACE (11) to VI_PXI_BAR5_SPACE (16)

Chapter 5 Operations

© National Instruments Corporation 5-77 NI-VISA Programmer Reference Manual

viMoveOut8/viMoveOut16/viMoveOut32

Purpose
Moves a block of data from local memory to the specified address space and offset.

C Syntax
ViStatus viMoveOut8(ViSession vi, ViUInt16 space,

ViBusAddress offset, ViBusSize length, ViAUInt8 buf8)

ViStatus viMoveOut16(ViSession vi, ViUInt16 space,

ViBusAddress offset, ViBusSize length, ViAUInt16 buf16)

ViStatus viMoveOut32(ViSession vi, ViUInt16 space,

ViBusAddress offset, ViBusSize length, ViAUInt32 buf32)

Visual Basic Syntax
viMoveOut8&(ByVal vi&, ByVal space%, ByVal offset&,

ByVal length&,buf8 as Byte)

viMoveOut16&(ByVal vi&, ByVal space%, ByVal offset&,

ByVal length&, buf16%)

viMoveOut32&(ByVal vi&, ByVal space%, ByVal offset&,

ByVal length&, buf32&)

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Parameters

Name Direction Description

vi IN Unique logical identifier to a session.

space IN Specifies the address space. Refer to the table included in
the Description section.

offset IN Offset (in bytes) of the device to write to.

length IN Number of elements to transfer, where the data width of
the elements to transfer is identical to data width (8, 16,
or 32 bits).

buf8, buf16,
or buf32

IN Data to write bus—8 bits for viMoveOut8(), 16 bits for
viMoveOut16(), and 32 bits for viMoveOut32().

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-78 ni.com

Return Values

Description
The viMoveOutXX() operations use the specified address space to write 8, 16, or 32 bits of
data, respectively, to the specified offset. These operations do not require viMapAddress()
to be called prior to their invocation.

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this
hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_INV_LENGTH Invalid length specified.

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

Chapter 5 Operations

© National Instruments Corporation 5-79 NI-VISA Programmer Reference Manual

The following table lists the valid entries for specifying address space.

INSTR Specific
Notice that offset specified in the viMoveOut8(), viMoveOut16(), and viMoveOut32()

operations for an INSTR Resource is the offset address relative to the device’s allocated
address base for the corresponding address space that was specified. For example, if space
specifies VI_A16_SPACE, then offset specifies the offset from the logical address base
address of the specified VXI device. If space specifies VI_A24_SPACE or VI_A32_SPACE,
then offset specifies the offset from the base address of the VXI device’s memory space
allocated by the VXI Resource Manager within VXI A24 or A32 space.

Notice also that the length specified in the viMoveInXX() operations for an INSTR
Resource is the number of elements (of the size corresponding to the operation) to transfer,
beginning at the specified offset. Therefore, offset + length*size cannot exceed the amount
of memory exported by the device in the given space.

MEMACC Specific
For a MEMACC Resource, the offset parameter specifies an absolute address.

Notice also that the length specified in the viMoveOutXX() operations for a MEMACC
Resource is the number of elements (of the size corresponding to the operation) to transfer,
beginning at the specified offset. Therefore, offset + length*size cannot exceed the total
amount of memory available in the given space.

Related Items
See the viMoveIn8/viMoveIn16/viMoveIn32() descriptions in this chapter. See the
VI_ATTR_DEST_INCREMENT description in Chapter 3, Attributes. Also see the INSTR
Resource and MEMACC Resource descriptions in Appendix B, Resources.

Interface Values

VXI, VME, and
GPIB-VXI

VI_A16_SPACE (1)

VI_A24_SPACE (2)

VI_A32_SPACE (3)

PXI VI_PXI_CFG_SPACE (10)

VI_PXI_BAR0_SPACE (11) to VI_PXI_BAR5_SPACE (16)

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-80 ni.com

viOpen

Purpose
Opens a session to the specified resource.

C Syntax
ViStatus viOpen(ViSession sesn, ViRsrc rsrcName,

ViAccessMode accessMode, ViUInt32 openTimeout, ViPSession vi)

Visual Basic Syntax
viOpen&(ByVal sesn&, ByVal rsrcName$, ByVal accessMode&,

ByVal openTimeout&, vi&)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Name Direction Description

sesn IN Resource Manager session—should always be a session
returned from viOpenDefaultRM().

rsrcName IN Unique symbolic name of a resource. See the Description
section for more information.

accessMode IN Specifies the mode by which the resource is to be
accessed. See the Description section for valid values.
If the parameter value is VI_NULL, the session uses
VISA-supplied default values.

openTimeout IN Specifies the maximum time period (in milliseconds)
that this operation waits before returning an error. This
does not set the I/O timeout—to do that you must call
viSetAttribute() with the attribute
VI_ATTR_TMO_VALUE.

vi OUT Unique logical identifier reference to a session.

Chapter 5 Operations

© National Instruments Corporation 5-81 NI-VISA Programmer Reference Manual

Return Values

Completion Codes Description

VI_SUCCESS Session opened successfully.

VI_SUCCESS_DEV_NPRESENT Session opened successfully, but the device at the
specified address is not responding.

VI_WARN_CONFIG_NLOADED The specified configuration either does not exist or
could not be loaded; using VISA-specified defaults.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given sesn does not support this operation. This
operation is supported only by a Resource Manager
session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_RSRC_NFOUND Insufficient location information or resource not
present in the system.

VI_ERROR_ALLOC Insufficient system resources to open a session.

VI_ERROR_RSRC_BUSY The resource is valid, but VISA cannot currently
access it.

VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained because
the resource is already locked with a lock type
incompatible with the lock requested.

VI_ERROR_TMO A session to the resource could not be obtained
within the specified openTimeout period.

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be
located or loaded.

VI_ERROR_INTF_NUM_NCONFIG The interface type is valid, but the specified
interface number is not configured.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-82 ni.com

Description
The viOpen() operation opens a session to the specified resource. It returns a session
identifier that can be used to call any other operations of that resource. The address string
passed to viOpen() must uniquely identify a resource. The following table shows the
grammar for the address string. Optional string segments are shown in square brackets ([]).

Use the GPIB keyword to establish communication with GPIB resources. Use the VXI
keyword for VXI resources via embedded, MXIbus, or 1394 controllers. Use the GPIB-VXI
keyword for VXI resources via a GPIB-VXI controller. Use the ASRL keyword to establish
communication with an asynchronous serial (such as RS-232 or RS-485) device. Use the PXI
keyword for PXI and PCI resources. Use the TCPIP keyword for Ethernet communication.

Interface Syntax

VXI INSTR VXI[board]::VXI logical address[::INSTR]

VXI MEMACC VXI[board]::MEMACC

VXI BACKPLANE VXI[board][::mainframe logical address]

::BACKPLANE

VXI SERVANT VXI[board]::SERVANT

GPIB-VXI INSTR GPIB-VXI[board]::VXI logical address[::INSTR]

GPIB-VXI MEMACC GPIB-VXI[board]::MEMACC

GPIB-VXI
BACKPLANE

GPIB-VXI[board][::mainframe logical address]

::BACKPLANE

GPIB INSTR GPIB[board]::primary address[::secondary

address][::INSTR]

GPIB INTFC GPIB[board]::INTFC

GPIB SERVANT GPIB[board]::SERVANT

PXI INSTR PXI[board]::device[::function][::INSTR]

Serial INSTR ASRL[board][::INSTR]

TCPIP INSTR TCPIP[board]::host address[::LAN device name]
[::INSTR]

TCPIP SOCKET TCPIP[board]::host address::port::SOCKET

Chapter 5 Operations

© National Instruments Corporation 5-83 NI-VISA Programmer Reference Manual

The following table shows the default value for optional string segments.

The following table shows examples of address strings.

Optional String Segments Default Value

board 0

secondary address none

LAN device name inst0

Address String Description

VXI0::1::INSTR A VXI device at logical address 1 in VXI interface
VXI0.

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a GPIB-VXI
controlled system.

GPIB::1::0::INSTR A GPIB device at primary address 1 and secondary
address 0 in GPIB interface 0.

ASRL1::INSTR A serial device attached to interface ASRL1.

VXI::MEMACC Board-level register access to the VXI interface.

GPIB-VXI1::MEMACC Board-level register access to GPIB-VXI interface
number 1.

GPIB2::INTFC Interface or raw resource for GPIB interface 2.

VXI::1::BACKPLANE Mainframe resource for chassis 1 on the default VXI
system, which is interface 0.

GPIB-VXI2::BACKPLANE Mainframe resource for default chassis on GPIB-VXI
interface 2.

GPIB1::SERVANT Servant/device-side resource for GPIB interface 1.

VXI0::SERVANT Servant/device-side resource for VXI interface 0.

PXI::15::INSTR PXI device number 15 on bus 0.

TCPIP0::1.2.3.4::999
::SOCKET

Raw TCP/IP access to port 999 at the specified IP
address.

TCPIP::dev@company.com
::INSTR

A TCP/IP device using VXI-11 located at the specified
address. This uses the default LAN Device Name of
inst0.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-84 ni.com

For the parameter accessMode, the value VI_EXCLUSIVE_LOCK (1) is used to acquire an
exclusive lock immediately upon opening a session; if a lock cannot be acquired, the session
is closed and an error is returned. The value VI_LOAD_CONFIG (4) is used to configure
attributes to values specified by some external configuration utility. Multiple access modes
can be used simultaneously by specifying a bit-wise OR of the values other than VI_NULL.
NI-VISA currently supports VI_LOAD_CONFIG only on Serial INSTR sessions.

All resource strings returned by viFindRsrc() will always be recognized by viOpen().
However, viFindRsrc() will not necessarily return all strings that you can pass to
viParseRsrc() or viOpen(). This is especially true for network and TCPIP resources.

Related Items
See the viClose(), viFindRsrc(), viOpenDefaultRM(), and viParseRsrc()

descriptions in this chapter. Also see the VISA Resource Manager description in Appendix B,
Resources.

Chapter 5 Operations

© National Instruments Corporation 5-85 NI-VISA Programmer Reference Manual

viOpenDefaultRM

Purpose
This function returns a session to the Default Resource Manager resource.

C Syntax
ViStatus viOpenDefaultRM(ViPSession sesn)

Visual Basic Syntax
viOpenDefaultRM&(sesn&)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

sesn OUT Unique logical identifier to a Default Resource Manager
session.

Completion Codes Description

VI_SUCCESS Session to the Default Resource Manager resource
created successfully.

VI_WARN_CONFIG_NLOADED At least one configured Passport module could not
be loaded.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-86 ni.com

Description
The viOpenDefaultRM() function must be called before any VISA operations can be
invoked. The first call to this function initializes the VISA system, including the Default
Resource Manager resource, and also returns a session to that resource. Subsequent calls
to this function return unique sessions to the same Default Resource Manager resource.

When a Resource Manager session is passed to viClose(), not only is that session closed,
but also all find lists and device sessions (which that Resource Manager session was used to
create) are closed.

Related Items
See the viOpen(), viClose(), and viFindRsrc() descriptions in this chapter. Also see
the VISA Resource Template description in Appendix B, Resources.

Error Codes Description

VI_ERROR_SYSTEM_ERROR The VISA system failed to initialize.

VI_ERROR_ALLOC Insufficient system resources to create a session to
the Default Resource Manager resource.

VI_ERROR_INV_SETUP Some implementation-specific configuration file is
corrupt or does not exist.

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be
located or loaded.

Chapter 5 Operations

© National Instruments Corporation 5-87 NI-VISA Programmer Reference Manual

viOut8/viOut16/viOut32

Purpose
Writes an 8-bit, 16-bit, or 32-bit value to the specified memory space and offset.

C Syntax
ViStatus viOut8(ViSession vi, ViUInt16 space, ViBusAddress offset,

ViUInt8 val8)

ViStatus viOut16(ViSession vi, ViUInt16 space, ViBusAddress offset,

ViUInt16 val16)

ViStatus viOut32(ViSession vi, ViUInt16 space, ViBusAddress offset,

ViUInt32 val32)

Visual Basic Syntax
viOut8&(ByVal vi&, ByVal space%, ByVal offset&, ByVal val8 as Byte)

viOut16&(ByVal vi&, ByVal space%, ByVal offset&, ByVal val16%)

viOut32&(ByVal vi&, ByVal space%, ByVal offset&, ByVal val32&)

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Parameters

Name Direction Description

vi IN Unique logical identifier to a session.

space IN Specifies the address space. Refer to the table included in
the Description section for more information.

offset IN Offset (in bytes) of the address or register to which to read.

val8, val16, or
val32

IN Data to write to bus—8 bits for viOut8(), 16 bits for
viOut16(), and 32 bits for viOut32().

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-88 ni.com

Return Values

Description
The viOutXX() operations use the specified address space to write 8, 16, or 32 bits of data,
respectively, to the specified offset. These operations do not require viMapAddress() to be
called prior to their invocation.

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this
hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

Chapter 5 Operations

© National Instruments Corporation 5-89 NI-VISA Programmer Reference Manual

The following table lists the valid entries for specifying address space.

INSTR Specific
Notice that offset specified in the viOut8(), viOut16(), and viOut32() operations
for an INSTR Resource is the offset address relative to the device’s allocated address base
for the corresponding address space that was specified. For example, if space specifies
VI_A16_SPACE, then offset specifies the offset from the logical address base address of
the specified VXI device. If space specifies VI_A24_SPACE or VI_A32_SPACE, then offset
specifies the offset from the base address of the VXI device’s memory space allocated by the
VXI Resource Manager within VXI A24 or A32 space.

MEMACC Specific
For a MEMACC Resource, the offset parameter specifies an absolute address.

Related Items
See the viIn8/viIn16/viIn32() descriptions in this chapter. Also see the INSTR
Resource and MEMACC Resource descriptions in Appendix B, Resources.

Value Description

VXI, VME, and
GPIB-VXI

VI_A16_SPACE (1)

VI_A24_SPACE (2)

VI_A32_SPACE (3)

PXI VI_PXI_CFG_SPACE (10)

VI_PXI_BAR0_SPACE (11) to VI_PXI_BAR5_SPACE (16)

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-90 ni.com

viParseRsrc

Purpose
Parse a resource string to get the interface information.

C Syntax
ViStatus viParseRsrc(ViSession sesn, ViRsrc rsrcName,

ViPUInt16 intfType, ViPUInt16 intfNum)

Visual Basic Syntax
viParseRsrc&(ByVal sesn&, ByVal rsrcName$, intfType%, intfNum%)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

sesn IN Resource Manager session—should always be the Default
Resource Manager for VISA returned from
viOpenDefaultRM().

rsrcName IN Unique symbolic name of a resource.

intfType OUT Interface type of the given resource string.

intfNum OUT Board number of the interface of the given resource string.

Completion Codes Description

VI_SUCCESS Resource string is valid.

Chapter 5 Operations

© National Instruments Corporation 5-91 NI-VISA Programmer Reference Manual

Description
This operation parses a resource string to verify its validity. It should succeed for all strings
returned by viFindRsrc() and recognized by viOpen(). This operation is useful if you
want to know what interface a given resource descriptor would use without actually opening
a session to it.

The values returned in intfType and intfNum correspond to the attributes
VI_ATTR_INTF_TYPE and VI_ATTR_INTF_NUM. These values would be the same if a user
opened that resource with viOpen() and queried the attributes with viGetAttribute().

Calling viParseRsrc() with “VXI::1::INSTR” will produce the same results as invoking
it with “vxi::1::instr”.

Related Items
See the viFindRsrc() and viOpen() descriptions in this chapter. Also see the VISA
Resource Template description in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given sesn does not support this
operation. For VISA, this operation is
supported only by the Default Resource
Manager session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified.
Parsing error.

VI_ERROR_RSRC_NFOUND Insufficient location information or
resource not present in the system.

VI_ERROR_ALLOC Insufficient system resources to parse the
string.

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not
be located or loaded.

VI_ERROR_INTF_NUM_NCONFIG The interface type is valid, but the specified
interface number is not configured.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-92 ni.com

viPeek8/viPeek16/viPeek32

Purpose
Reads an 8-bit, 16-bit, or 32-bit value from the specified address.

C Syntax
void viPeek8(ViSession vi, ViAddr addr, ViPUInt8 val8)

void viPeek16(ViSession vi, ViAddr addr, ViPUInt16 val16)

void viPeek32(ViSession vi, ViAddr addr, ViPUInt32 val32)

Visual Basic Syntax
viPeek8(ByVal vi&, ByVal addr&, val8 as Byte)

viPeek16(ByVal vi&, ByVal addr&, val16%)

viPeek32(ByVal vi&, ByVal addr&, val32&)

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Parameters

Return Values
None

Description
The viPeekXX() operations read an 8-bit, 16-bit, or 32-bit value, respectively, from the
address location specified in addr. The address must be a valid memory address in the current
process mapped by a previous viMapAddress() call.

Name Direction Description

vi IN Unique logical identifier to a session.

addr IN Source address to read the value.

val8, val16, or
val32

OUT Data read from bus—8 bits for viPeek8(), 16 bits for
viPeek16(), and 32 bits for viPeek32().

Chapter 5 Operations

© National Instruments Corporation 5-93 NI-VISA Programmer Reference Manual

Related Items
See the viMapAddress() and viPoke8/viPoke16/viPoke32() descriptions. Also see
the VI_ATTR_WIN_ACCESS description in Chapter 3, Attributes, and see the INSTR Resource
and MEMACC Resource descriptions in Appendix B, Resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-94 ni.com

viPoke8/viPoke16/viPoke32

Purpose
Writes an 8-bit, 16-bit, or 32-bit value to the specified address.

C Syntax
void viPoke8(ViSession vi, ViAddr addr, ViUInt8 val8)

void viPoke16(ViSession vi, ViAddr addr, ViUInt16 val16)

void viPoke32(ViSession vi, ViAddr addr, ViUInt32 val32)

Visual Basic Syntax
viPoke8(ByVal vi&, ByVal addr&, ByVal val8 as Byte)

viPoke16(ByVal vi&, ByVal addr&, ByVal val16%)

viPoke32(ByVal vi&, ByVal addr&, ByVal val32&)

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Parameters

Return Values
None

Description
The viPokeXX() operations store the content of an 8-bit, 16-bit, or 32-bit value, respectively,
to the address pointed to by addr. The address must be a valid memory address in the current
process mapped by a previous viMapAddress() call.

Name Direction Description

vi IN Unique logical identifier to a session.

addr IN Destination address to store the value.

val8, val16, or
val32

IN Value to be stored—8 bits for viPoke8(), 16 bits for
viPoke16(), and 32 bits for viPoke32().

Chapter 5 Operations

© National Instruments Corporation 5-95 NI-VISA Programmer Reference Manual

Related Items
See the viMapAddress() and viPeek8/viPeek16/viPeek32() descriptions. See the
VI_ATTR_WIN_ACCESS description in Chapter 3, Attributes. Also see the INSTR Resource
and MEMACC Resource descriptions in Appendix B, Resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-96 ni.com

viPrintf

Purpose
Converts, formats, and sends the parameters (designated by ...) to the device as specified by
the format string.

C Syntax
ViStatus viPrintf(ViSession vi, ViString writeFmt, ...)

Visual Basic Syntax
N/A

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR,
TCPIP INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

writeFmt IN String describing the format for arguments.

… IN Parameters to which the format string is applied.

Completion Codes Description

VI_SUCCESS Parameters were successfully formatted.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

Chapter 5 Operations

© National Instruments Corporation 5-97 NI-VISA Programmer Reference Manual

Description
The viPrintf() operation sends data to a device as specified by the format string. Before
sending the data, the operation formats the arguments in the parameter list as specified in the
writeFmt string. The viWrite() operation performs the actual low-level I/O to the device.
As a result, you should not use the viWrite() and viPrintf() operations in the same
session.

The writeFmt string can include regular character sequences, special formatting characters,
and special format specifiers. The regular characters (including white spaces) are written
to the device unchanged. The special characters consist of ‘\’ (backslash) followed by a
character. The format specifier sequence consists of ‘%’ (percent) followed by an optional
modifier (flag), followed by a format code.

Special Formatting Characters
Special formatting character sequences send special characters. The following table lists the
special characters and describes what they send to the device.

VI_ERROR_IO Could not perform write operation because of I/O
error.

VI_ERROR_TMO Timeout expired before write operation completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

Formatting
Character Character Sent to Device

\n Sends the ASCII LF character. The END identifier will also be
automatically sent.

\r Sends an ASCII CR character.

\t Sends an ASCII TAB character.

\### Sends the ASCII character specified by the octal value.

\x## Sends the ASCII character specified by the hexadecimal value.

Error Codes Description

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-98 ni.com

Format Specifiers
The format specifiers convert the next parameter in the sequence according to the modifier
and format code, after which the formatted data is written to the specified device. The format
specifier takes the following syntax:

%[modifiers]format code

where format code specifies which data type the argument is represented in. Modifiers are
optional codes that describe the target data.

In the following tables, a ‘d’ format code refers to all conversion codes of type integer
(‘d’, ‘i’, ‘o’, ‘u’, ‘x’, ‘X’), unless specified as %d only. Similarly, an ‘f’ format code refers to
all conversion codes of type float (‘f’, ‘e’, ‘E’, ‘g’, ‘G’), unless specified as %f only.

Every conversion command starts with the % character and ends with a conversion character
(format code). Between the % character and the format code, the following modifiers can
appear in the sequence.

\" Sends the ASCII double-quote (") character.

\\ Sends a backslash (\) character.

Formatting
Character Character Sent to Device

Chapter 5 Operations

© National Instruments Corporation 5-99 NI-VISA Programmer Reference Manual

ANSI C Standard Modifiers

Modifier
Supported with
Format Code Description

An integer
specifying
field width.

d, f, s format
codes

This specifies the minimum field width of the
converted argument. If an argument is shorter than
the field width, it will be padded on the left (or on
the right if the - flag is present).

Special case:

For the @H, @Q, and @B flags, the field
width includes the #H, #Q, and #B strings,
respectively.

An asterisk (*) may be present in lieu of a field
width modifier, in which case an extra arg is used.
This arg must be an integer representing the field
width.

An integer
specifying
precision.

d, f, s format
codes

The precision string consists of a string of decimal
digits. A decimal point (.) must prefix the precision
string. The precision string specifies the following:

a. The minimum number of digits to appear for the
@1, @H, @Q, and @B flags and the i, o, u, x,
and X format codes.

b. The maximum number of digits after the
decimal point in case of f format codes.

c. The maximum numbers of characters for the
string (s) specifier.

d. Maximum significant digits for g format code.

An asterisk (*) may be present in lieu of a precision
modifier, in which case an extra arg is used. This
arg must be an integer representing the precision of
a numeric field.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-100 ni.com

Enhanced Modifiers to ANSI C Standards

An argument
length
modifier.

h, l, L, z, and
Z are legal
values. (z and
Z are not
ANSI C
standard
modifiers.)

h (d, b, B format
codes)

l (d, f, b, B
format codes)

L (f format
code)

z (b, B format
codes)

Z (b, B format
codes)

The argument length modifiers specify one of the
following:

a. The h modifier promotes the argument to a
short or unsigned short, depending on the
format code type.

b. The l modifier promotes the argument to a
long or unsigned long.

c. The L modifier promotes the argument to a
long double parameter.

d. The z modifier promotes the argument to an
array of floats.

e. The Z modifier promotes the argument to an
array of doubles.

Modifier
Supported with
Format Code Description

A comma (,)
followed by an
integer n,
where n
represents the
array size.

%d (plus
variants) and %f

only

The corresponding argument is interpreted as a
reference to the first element of an array of size n.
The first n elements of this list are printed in the
format specified by the format code.

An asterisk (*) may be present after the comma (,)
modifier, in which case an extra arg is used. This
arg must be an integer representing the array size of
the given type.

Modifier
Supported with
Format Code Description

Chapter 5 Operations

© National Instruments Corporation 5-101 NI-VISA Programmer Reference Manual

The following are the allowed format code characters. A format specifier sequence should
include one and only one format code.

@1 %d (plus
variants) and
%f only

Converts to an IEEE 488.2 defined NR1 compatible
number, which is an integer without any decimal
point (for example, 123).

@2 %d (plus
variants) and
%f only

Converts to an IEEE 488.2 defined NR2 compatible
number. The NR2 number has at least one digit after
the decimal point (for example, 123.45).

@3 %d (plus
variants) and
%f only

Converts to an IEEE 488.2 defined NR3 compatible
number. An NR3 number is a floating point number
represented in an exponential form (for example,
1.2345E-67).

@H %d (plus
variants) and
%f only

Converts to an IEEE 488.2 defined
<HEXADECIMAL NUMERIC RESPONSE
DATA>. The number is represented in a base of
sixteen form. Only capital letters should represent
numbers. The number is of form #HXXX.., where
XXX.. is a hexadecimal number (for example,
#HAF35B).

@Q %d (plus
variants) and
%f only

Converts to an IEEE 488.2 defined <OCTAL
NUMERIC RESPONSE DATA>. The number is
represented in a base of eight form. The number is
of the form #QYYY.., where YYY.. is an octal number
(for example, #Q71234).

@B %d (plus
variants) and
%f only

Converts to an IEEE 488.2 defined <BINARY
NUMERIC RESPONSE DATA>. The number is
represented in a base two form. The number is of
the form #BZZZ.., where ZZZ.. is a binary number
(for example, #B011101001).

Modifier
Supported with
Format Code Description

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-102 ni.com

ANSI C Standard Format Codes
% Send the ASCII percent (%) character.

c Argument type: A character to be sent.

d Argument type: An integer.

f Argument type: A floating point number.

Modifier Interpretation

Default functionality Print an integer in NR1 format (an integer without a decimal
point).

@2 or @3 The integer is converted into a floating point number and
output in the correct format.

field width Minimum field width of the output number. Any of the six
IEEE 488.2 modifiers can also be specified with field width.

Length modifier l arg is a long integer.

Length modifier h arg is a short integer.

, array size arg points to an array of integers (or long or short integers,
depending on the length modifier) of size array size. The
elements of this array are separated by array size –1 commas
and output in the specified format.

Modifier Interpretation

Default functionality Print a floating point number in NR2 format (a number with at
least one digit after the decimal point).

@1 Print an integer in NR1 format. The number is truncated.

@3 Print a floating point number in NR3 format (scientific
notation). Precision can also be specified.

field width Minimum field width of the output number. Any of the six
IEEE 488.2 modifiers can also be specified with field width.

Length modifier l arg is a double float.

Chapter 5 Operations

© National Instruments Corporation 5-103 NI-VISA Programmer Reference Manual

s Argument type: A reference to a NULL-terminated string that is sent to the device without
change.

Enhanced Format Codes
b Argument type: A location of a block of data.

Length modifier L arg is a long double.

, array size arg points to an array of floats (or doubles or long doubles,
depending on the length modifier) of size array size. The
elements of this array are separated by array size –1 commas
and output in the specified format.

Flag or Modifier Interpretation

Default functionality The data block is sent as an IEEE 488.2 <DEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>. A count (long
integer) must appear as a flag that specifies the number of
elements (by default, bytes) in the block. A field width or
precision modifier is not allowed with this format code.

* (asterisk) An asterisk may be present instead of the count. In such a case,
two args are used, the first of which is a long integer specifying
the count of the number of elements in the data block. The
second arg is a reference to the data block. The size of an
element is determined by the optional length modifier (see
below), and the default is byte width.

Length modifier h arg points to an array of unsigned short integers (16 bits). The
count corresponds to the number of words rather than bytes.
The data is swapped and padded into standard IEEE 488.2
format, if native computer representation is different.

Length modifier l arg points to an array of unsigned long integers. The count
specifies the number of longwords (32 bits). Each longword
data is swapped and padded into standard IEEE 488.2 format,
if native computer representation is different.

Modifier Interpretation

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-104 ni.com

B Argument type: A location of a block of data. The functionality is similar to b, except the
data block is sent as an IEEE 488.2 <INDEFINITE LENGTH ARBITRARY BLOCK
RESPONSE DATA>. This format involves sending an ASCII LF character with the END
indicator set after the last byte of the block.

The END indicator is not appended when LF (\n) is part of a binary data block, as with %b

or %B.

y Argument type: A location of a block of binary data.

Length modifier z arg points to an array of floats. The count specifies the number
of floating point numbers (32 bits). The numbers are
represented in IEEE 754 format, if native computer
representation is different.

Length modifier Z arg points to an array of doubles. The count specifies the
number of double floats (64 bits). The numbers will be
represented in IEEE 754 format, if native computer
representation is different.

Modifier Interpretation

Default functionality The data block is sent as raw binary data. A count (long integer)
must appear as a flag that specifies the number of elements (by
default, bytes) in the block. A field width or precision modifier
is not allowed with this format code.

* (asterisk) An asterisk may be present instead of the count. In such a case,
two args are used, the first of which is a long integer specifying
the count of the number of elements in the data block. The
second arg is a reference to the data block. The size of an
element is determined by the optional length modifier (see
below), and the default is byte width.

Length modifier h arg points to an array of unsigned short integers (16 bits). The
count corresponds to the number of words rather than bytes. If
the optional !ol byte order modifier is present, the data is sent
in little endian format; otherwise, the data is sent in standard
IEEE 488.2 format. The data will be byte swapped and padded
as appropriate if native computer representation is different.

Flag or Modifier Interpretation

Chapter 5 Operations

© National Instruments Corporation 5-105 NI-VISA Programmer Reference Manual

Other ANSI C Conversion Codes
For ANSI C compatibility, VISA also supports the following conversion codes for output
codes: ‘i’, ‘o’, ‘u’, ‘n’, ‘x’, ‘X’, ‘e’, ‘E’, ‘g’, ‘G’, and ‘p.’ For further explanation of these
conversion codes, see the ANSI C Standard.

Also refer to your ANSI C documentation for information on the printf function.

Note VISA will not send out the data across the bus, by default, until a ‘\n’ character is
encountered in the format string (not the data stream). You can modify this behavior with
the VI_ATTR_WR_BUF_OPER_MODE attribute or with the viFlush() operation.

Related Items
See the viFlush(), viSPrintf(), viVPrintf(), and viVSPrintf(), and viScanf(),
descriptions in this chapter, and the VI_ATTR_WR_BUF_OPER_MODE description in Chapter 3,
Attributes. Also see the INSTR Resource, INTFC Resource, SERVANT Resource, and
SOCKET Resource descriptions in Appendix B, Resources, and refer to your ANSI C
documentation for information on the printf function.

Length modifier l arg points to an array of unsigned long integers (32 bits). The
count specifies the number of longwords rather than bytes. If
the optional !ol byte order modifier is present, the data is sent
in little endian format; otherwise, the data is sent in standard
IEEE 488.2 format. The data will be byte swapped and padded
as appropriate if native computer representation is different.

Byte order modifier !ob Data is sent in standard IEEE 488.2 (big endian) format. This
is the default behavior if neither !ob nor !ol is present.

Byte order modifier !ol Data is sent in little endian format.

Modifier Interpretation

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-106 ni.com

viQueryf

Purpose
Performs a formatted write and read through a single call to an operation.

C Syntax
ViStatus viQueryf(ViSession vi, ViString writeFmt,

ViString readFmt,...)

Visual Basic Syntax
N/A

Resource Classes
GPIB INSTR, GPIB-VXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

writeFmt IN String describing the format of write arguments.

readFmt IN String describing the format of read arguments.

… IN/OUT Parameters to which write and read format strings are
applied.

Completion Codes Description

VI_SUCCESS Successfully completed the query operation.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_IO Could not perform read/write operation because
of I/O error.

Chapter 5 Operations

© National Instruments Corporation 5-107 NI-VISA Programmer Reference Manual

Description
This operation provides a mechanism of Send, then receive typical to a command sequence
from a commander device. In this manner, the response generated from the command can be
read immediately.

This operation is a combination of the viPrintf() and viScanf() operations. The first
n arguments corresponding to the first format string are formatted by using the writeFmt
string, then sent to the device. The write buffer is flushed immediately after the write portion
of the operation completes. After these actions, the response data is read from the device into
the remaining parameters (starting from parameter n+1) using the readFmt string.

Note Because the prototype for this function cannot provide complete type-checking,
remember that all output parameters must be passed by reference.

Related Items
See the viPrintf(), viScanf(), and viVQueryf() descriptions in this chapter. Also see
the INSTR Resource and SOCKET Resource descriptions in Appendix B, Resources.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout occurred before read/write operation
completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt
string is invalid.

VI_ERROR_NSUP_FMT The format specifier is not supported for current
argument type.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

Error Codes Description

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-108 ni.com

viRead

Purpose
Reads data from device or interface synchronously.

C Syntax
ViStatus viRead(ViSession vi, ViPBuf buf, ViUInt32 count,

ViPUInt32 retCount)

Visual Basic Syntax
viRead&(ByVal vi&, ByVal buf$, ByVal count&, retCount&)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR,
TCPIP INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Name Direction Description

vi IN Unique logical identifier to a session.

buf OUT Location of a buffer to receive data from device.

count IN Number of bytes to be read.

retCount OUT Number of bytes actually transferred.

Chapter 5 Operations

© National Instruments Corporation 5-109 NI-VISA Programmer Reference Manual

Return Values

Completion Codes Description

VI_SUCCESS The operation completed successfully and the END
indicator was received (for interfaces that have
END indicators). This completion code is returned
regardless of whether the termination character is
received or the number of bytes read is equal to
count.

VI_SUCCESS_TERM_CHAR The specified termination character was read but no
END indicator was received. This completion code
is returned regardless of whether the number of
bytes read is equal to count.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count. No
END indicator was received and no termination
character was read.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to start read operation because setup is
invalid (due to attributes being set to an inconsistent
state).

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-110 ni.com

Description
The viRead() operation synchronously transfers data. The data read is to be stored in the
buffer represented by buf. This operation returns only when the transfer terminates. Only one
synchronous read operation can occur at any one time.

Related Items
See the viReadAsync(), viBufRead(), viReadToFile(), and viWrite() descriptions
in this chapter. Also see the INSTR Resource, INTFC Resource, SERVANT Resource, and
SOCKET Resource descriptions in Appendix B, Resources.

VI_ERROR_NCIC The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS No-Listeners condition is detected (both NRFD and
NDAC are unasserted).

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer.
A character was not read from the hardware before
the next character arrived.

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_CONN_LOST The I/O connection for the given session has been
lost.

Error Codes Description

Chapter 5 Operations

© National Instruments Corporation 5-111 NI-VISA Programmer Reference Manual

viReadAsync

Purpose
Reads data from device or interface asynchronously.

C Syntax
ViStatus viReadAsync(ViSession vi, ViPBuf buf, ViUInt32 count,

ViPJobId jobId)

Visual Basic Syntax
N/A

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR,
TCPIP INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

buf OUT Location of a buffer to receive data from device.

count IN Number of bytes to be read.

jobId OUT Job ID of this asynchronous read operation.

Completion Codes Description

VI_SUCCESS Asynchronous read operation successfully queued.

VI_SUCCESS_SYNC Read operation performed synchronously.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-112 ni.com

Description
The viReadAsync() operation asynchronously transfers data. The data read is to be
stored in the buffer represented by buf. This operation normally returns before the transfer
terminates.

Before calling this operation, you should enable the session for receiving I/O completion
events. After the transfer has completed, an I/O completion event is posted.

The operation returns jobId, which you can use with either viTerminate() to abort the
operation, or with an I/O completion event to identify which asynchronous read operation
completed. VISA will never return VI_NULL for a valid jobID.

Note If you have enabled VI_EVENT_IO_COMPLETION for queueing (VI_QUEUE), for
each successful call to viReadAsync(), you must call viWaitOnEvent() to retrieve the
I/O completion event. This is true even if the I/O is done synchronously (that is, if the
operation returns VI_SUCCESS_SYNC). If you are using LabVIEW, this is done for you
automatically.

Related Items
See the viEnableEvent(), viRead(), viTerminate(), viWaitOnEvent(), and
viWriteAsync() descriptions in this chapter, and the VI_EVENT_IO_COMPLETION
description in Chapter 4, Events. Also see the INSTR Resource, INTFC Resource, SERVANT
Resource, and SOCKET Resource descriptions in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_QUEUE_ERROR Unable to queue read operation.

VI_ERROR_IN_PROGRESS Unable to queue the asynchronous operation
because there is already an operation in progress.

Chapter 5 Operations

© National Instruments Corporation 5-113 NI-VISA Programmer Reference Manual

viReadSTB

Purpose
Reads a status byte of the service request.

C Syntax
ViStatus viReadSTB(ViSession vi, ViPUInt16 status)

Visual Basic Syntax
viReadSTB&(ByVal vi&, status%)

Resource Classes
GPIB INSTR, GPIB-VXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

status OUT Service request status byte.

Completion Codes Description

VI_SUCCESS The operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_SRQ_NOCCURRED Service request has not been received for the
session.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-114 ni.com

Description
The viReadSTB() operation reads a service request status from a service requester (the
message-based device). For example, on the IEEE 488.2 interface, the message is read by
polling devices; for other types of interfaces, a message is sent in response to a service
request to retrieve status information. For a session to a Serial device or Ethernet socket, if
VI_ATTR_IO_PROT is VI_PROT_4882_STRS, the device is sent the string “*STB?\n”, and
then the device’s status byte is read; otherwise, this operation is not valid. If the status
information is only one byte long, the most significant byte is returned with the zero value.
If the service requester does not respond in the actual timeout period, VI_ERROR_TMO is
returned.

Related Items
See the VI_ATTR_IO_PROT description in Chapter 3, Attributes, and the
VI_EVENT_SERVICE_REQ description in Chapter 4, Events. Also see the INSTR Resource
and SOCKET Resource descriptions in Appendix B, Resources.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS No-Listeners condition is detected (both NRFD and
NDAC are unasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

VI_ERROR_CONN_LOST The I/O connection for the given session has been
lost.

Error Codes Description

Chapter 5 Operations

© National Instruments Corporation 5-115 NI-VISA Programmer Reference Manual

viReadToFile

Purpose
Read data synchronously, and store the transferred data in a file.

C Syntax
ViStatus viReadToFile(ViSession vi, ViString fileName,

ViUInt32 count, ViPUInt32 retCount)

Visual Basic Syntax
viReadToFile&(ByVal vi&, ByVal filename$, ByVal count&, retCount&)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

fileName IN Name of file to which data will be written.

count IN Number of bytes to be read.

retCount OUT Number of bytes actually transferred.

Completion Codes Description

VI_SUCCESS The operation completed successfully and
the END indicator was received (for
interfaces that have END indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was
read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-116 ni.com

Error Codes Description

VI_ERROR_INV_OBJECT The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this
operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_TMO Timeout expired before operation
completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred
during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred
during transfer.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error
during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to start read operation because
setup is invalid (due to attributes being set
to an inconsistent state).

VI_ERROR_NCIC The interface associated with the given vi is
not currently the controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer.
A character was not read from the hardware
before the next character arrived.

VI_ERROR_IO An unknown I/O error occurred during
transfer.

VI_ERROR_FILE_ACCESS An error occurred while trying to open the
specified file. Possible reasons include an
invalid path or lack of access rights.

Chapter 5 Operations

© National Instruments Corporation 5-117 NI-VISA Programmer Reference Manual

Description
This read operation synchronously transfers data. The file specified in fileName is opened in
binary write-only mode. If the value of VI_ATTR_FILE_APPEND_EN is VI_FALSE, any
existing contents are destroyed; otherwise, the file contents are preserved. The data read is
written to the file. This operation returns only when the transfer terminates.

This operation is useful for storing raw data to be processed later.

Special Values for retCount Parameter

Related Items
See the viRead(), and viWriteFromFile() descriptions in this chapter and
VI_ATTR_FILE_APPEND_EN in Chapter 3, Attributes. Also see the INSTR Resource, INTFC
Resource, SERVANT Resource, and SOCKET Resource descriptions in Appendix B,
Resources.

VI_ERROR_FILE_IO An error occurred while accessing the
specified file.

VI_ERROR_CONN_LOST The I/O connection for the given session
has been lost.

Value Action Description

VI_NULL Do not return the number of bytes
transferred.

Error Codes Description

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-118 ni.com

viScanf

Purpose
Reads, converts, and formats data using the format specifier. Stores the formatted data in the
parameters (designated by ...).

C Syntax
ViStatus viScanf(ViSession vi, ViString readFmt, ...)

Visual Basic Syntax
N/A

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR,
TCPIP INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

readFmt IN String describing the format for arguments.

… OUT Parameters into which the data is read and the format
string is applied.

Completion Codes Description

VI_SUCCESS Data was successfully read and formatted into ...
parameter(s).

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

Chapter 5 Operations

© National Instruments Corporation 5-119 NI-VISA Programmer Reference Manual

Description
The viScanf() operation receives data from a device, formats it by using the format string,
and stores the resulting data in the arg parameter list. The viRead() operation is used for
the actual low-level read from the device. As a result, you should not use the viRead() and
viScanf() operations in the same session.

Note Because the prototype for this function cannot provide complete type-checking,
remember that all output parameters must be passed by reference.

The format string can have format specifier sequences, white characters, and ordinary
characters. The white characters—blank, vertical tabs, horizontal tabs, form feeds, new
line/linefeed, and carriage return—are ignored except in the case of %c and %[]. All
other ordinary characters except % should match the next character read from the device.

The format string consists of a %, followed by optional modifier flags, followed by one of
the format codes in that sequence. It is of the form:

%[modifier]format code

where the optional modifier describes the data format, while format code indicates the nature
of data (data type). One and only one format code should be performed at the specifier
sequence. A format specification directs the conversion to the next input arg.

The results of the conversion are placed in the variable that the corresponding argument points
to, unless the * assignment-suppressing character is given. In such a case, no arg is used and
the results are ignored.

The viScanf() operation accepts input until an END indicator is read or all the format
specifiers in the readFmt string are satisfied. Thus, detecting an END indicator before the
readFmt string is fully consumed will result in ignoring the rest of the format string. Also, if

VI_ERROR_IO Could not perform read operation because of I/O
error.

VI_ERROR_TMO Timeout expired before read operation completed.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

Error Codes Description

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-120 ni.com

some data remains in the buffer after all format specifiers in the readFmt string are satisfied,
the data will be kept in the buffer and will be used by the next viScanf() operation.

When viScanf() times out, the next call to viScanf() will read from an empty buffer and
force a read from the device.

Notice that when an END indicator is received, not all arguments in the format string may be
consumed. However, the operation still returns a successful completion code.

The following two tables describe optional modifiers that can be used in a format specifier
sequence.

ANSI C Standard Modifiers

Modifier
Supported with
Format Code Description

An integer
representing
the field width

%s, %c, %[]
format codes

It specifies the maximum field width that the
argument will take. A ‘#’ may also appear instead
of the integer field width, in which case the next arg
is a reference to the field width. This arg is a
reference to an integer for %c and %s. The field
width is not allowed for %d or %f.

A length
modifier (‘h,’
‘l,’ ‘L,’ ‘z,’ or
‘Z’). z and Z

are not
ANSI C
standard
modifiers.

h (d, b format
codes)

l (d, f, b format
codes)

L (f format
code)

z (b format
code)

Z (b format
code)

The argument length modifiers specify one of the
following:

a. The h modifier promotes the argument to be
a reference to a short integer or unsigned short
integer, depending on the format code.

b. The l modifier promotes the argument to point
to a long integer or unsigned long integer.

c. The L modifier promotes the argument to point
to a long double floats parameter.

d. The z modifier promotes the argument to point
to an array of floats.

e. The Z modifier promotes the argument to point
to an array of double floats.

* All format codes An asterisk (*) acts as the assignment suppression
character. The input is not assigned to any
parameters and is discarded.

Chapter 5 Operations

© National Instruments Corporation 5-121 NI-VISA Programmer Reference Manual

Enhanced Modifiers to ANSI C Standards

Modifier
Supported with
Format Code Description

A comma (,)
followed by an
integer n,
where n
represents the
array size.

%d (plus
variants) and %f

only

The corresponding argument is interpreted as a
reference to the first element of an array of size n.
The first n elements of this list are printed in the
format specified by the format code.

A number sign (#) may be present after the
comma (,) modifier, in which case an extra arg is
used. This arg must be an integer representing the
array size of the given type.

@1 %d (plus
variants) and %f

only

Converts to an IEEE 488.2 defined NR1 compatible
number, which is an integer without any decimal
point (for example, 123).

@2 %d (plus
variants) and %f

only

Converts to an IEEE 488.2 defined NR2 compatible
number. The NR2 number has at least one digit after
the decimal point (for example, 123.45).

@H %d (plus
variants) and %f

only

Converts to an IEEE 488.2 defined
<HEXADECIMAL NUMERIC RESPONSE
DATA>. The number is represented in a base of
sixteen form. Only capital letters should represent
numbers. The number is of form #HXXX.., where
XXX.. is a hexadecimal number (for example,
#HAF35B).

@Q %d (plus
variants) and %f

only

Converts to an IEEE 488.2 defined <OCTAL
NUMERIC RESPONSE DATA>. The number is
represented in a base of eight form. The number is
of the form #QYYY.., where YYY.. is an octal number
(for example, #Q71234).

@B %d (plus
variants) and %f

only

Converts to an IEEE 488.2 defined <BINARY
NUMERIC RESPONSE DATA>. The number is
represented in a base two form. The number is of
the form #BZZZ.., where ZZZ.. is a binary number
(for example, #B011101001).

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-122 ni.com

ANSI C Standard Format Codes
c Argument type: A reference to a character.

Note This format code does not ignore white space in the device input stream.

d Argument type: A reference to an integer.

Flags or Modifiers Interpretation

Default functionality A character is read from the device and stored in the parameter.

field width field width number of characters are read and stored at the
reference location (the default field width is 1). No NULL
character is added at the end of the data block.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until an entire number is
read. The number read may be in either IEEE 488.2 formats
<DECIMAL NUMERIC PROGRAM DATA>, also known as
NRf; flexible numeric representation (NR1, NR2, NR3...); or
<NON-DECIMAL NUMERIC PROGRAM DATA> (#H, #Q,
and #B).

field width The input number will be stored in a field at least this wide.

Length modifier l arg is a reference to a long integer.

Length modifier h arg is a reference to a short integer. Rounding is performed
according to IEEE 488.2 rules (0.5 and up).

, array size arg points to an array of integers (or long or short integers,
depending on the length modifier) of size array size. The
elements of this array should be separated by commas.
Elements will be read until either array size number of
elements are consumed or they are no longer separated by
commas. If the array size contains a number sign (#), two
arguments are used. The first arg read is a pointer to an integer
specifying the maximum number of elements that the array can
hold. The second arg should be a reference to an array. Also,
the actual number of elements read is stored back in the first
argument.

Chapter 5 Operations

© National Instruments Corporation 5-123 NI-VISA Programmer Reference Manual

f Argument type: A reference to a floating point number.

s Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until an entire number is
read. The number read may be in either IEEE 488.2 formats
<DECIMAL NUMERIC PROGRAM DATA> (NRf) or
<NON-DECIMAL NUMERIC PROGRAM DATA> (#H, #Q,
and #B).

field width The input will be stored in a field at least this wide.

Length modifier l arg is a reference to a double floating point number.

Length modifier L arg is a reference to a long double number.

, array size arg points to an array of floats (or double or long double,
depending on the length modifier) of size array size. The
elements of this array should be separated by commas.
Elements will be read until either array size number of
elements are consumed or they are no longer separated by
commas. If the array size contains a number sign (#), two
arguments are used. The first arg read is a pointer to an integer
specifying the maximum number of elements that the array can
hold. The second arg should be a reference to an array. Also,
the actual number of elements read is stored back in the first
argument.

Flags or Modifiers Interpretation

Default functionality All leading white space characters are ignored. Characters are
read from the device into the string until a white space
character is read.

field width This flag gives the maximum string size. If the field width
contains a number sign (#), two arguments are used. The first
argument read is a pointer to an integer specifying the
maximum array size. The second should be a reference to an
array. In case of field width characters already read before
encountering a white space, additional characters are read and
discarded until a white space character is found. In case of
field width, the actual number of characters read are stored
back in the integer pointed to by the first argument.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-124 ni.com

Enhanced Format Codes
b Argument type: A reference to a data array.

Flags or Modifiers Interpretation

Default functionality The data must be in IEEE 488.2 <ARBITRARY BLOCK
PROGRAM DATA> format. The format specifier sequence
should have a flag describing the field width, which will give
a maximum count of the number of bytes (or words or
longwords, depending on length modifiers) to be read from the
device. If the field width contains a # sign, two arguments are
used. The first arg read is a pointer to a long integer specifying
the maximum number of elements that the array can hold. The
second arg should be a reference to an array. Also, the actual
number of elements read is stored back in the first argument.
In absence of length modifiers, the data is assumed to be of
byte-size elements. In some cases, data might be read until
an END indicator is read.

Length modifier h arg points to an array of 16-bit words, and count specifies the
number of words. Data that is read is assumed to be in IEEE
488.2 byte ordering. It will be byte swapped and padded as
appropriate to native computer format.

Length modifier l arg points to an array of 32-bit longwords, and count specifies
the number of longwords. Data that is read is assumed to be in
IEEE 488.2 byte ordering. It will be byte swapped and padded
as appropriate to native computer format.

Length modifier z arg points to an array of floats, and count specifies the number
of floating point numbers. Data that is read is an array of 32-bit
IEEE 754 format floating point numbers.

Length modifier Z arg points to an array of doubles, and the count specifies the
number of floating point numbers. Data that is read is an array
of 64-bit IEEE 754 format floating point numbers.

Chapter 5 Operations

© National Instruments Corporation 5-125 NI-VISA Programmer Reference Manual

t Argument type: A reference to a string.

T Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until the first END
indicator is received. The character on which the END
indicator was received is included in the buffer.

field width This flag gives the maximum string size. If an END indicator is
not received before field width number of characters, additional
characters are read and discarded until an END indicator
arrives. #field width has the same meaning as in %s.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until the first linefeed
character (\n) is received. The linefeed character is included
in the buffer.

field width This flag gives the maximum string size. If a linefeed character
is not received before field width number of characters,
additional characters are read and discarded until a linefeed
character arrives. #field width has the same meaning as in %s.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-126 ni.com

y Argument type: A location of a block of binary data.

Other ANSI C Format Specifiers
For ANSI C compatibility, VISA also supports the following format specifiers for input
codes: ‘i’, ‘o’, ‘u’, ‘n’, ‘x’, ‘X’, ‘e’, ‘E’, ‘g’, ‘G’, ‘p’, ‘[...]’, and ‘[^...]’. For further
explanation of these conversion codes, see the ANSI C Standard.

Modifier Interpretation

Default functionality The data block is read as raw binary data. The format specifier
sequence should have a flag describing the array size, which
will give a maximum count of the number of bytes (or words or
longwords, depending on length modifiers) to be read from the
device. If the array size contains a # sign, two arguments are
used. The first argument read is a pointer to a long integer that
specifies the maximum number of elements that the array can
hold. The second argument should be a reference to an array.
Also, the actual number of elements read is stored back in the
first argument. In absence of length modifiers, the data is
assumed to be byte-size elements. In some cases, data might be
read until an END indicator is read.

Length modifier h The data block is assumed to be a reference to an array of
unsigned short integers (16 bits). The count corresponds to the
number of words rather than bytes. If the optional !olmodifier
is present, the data read is assumed to be in little endian format;
otherwise, the data read is assumed to be in standard IEEE
488.2 format. The data will be byte swapped and padded as
appropriate to native computer format.

Length modifier l The data block is assumed to be a reference to an array of
unsigned long integers (32 bits). The count corresponds to the
number of longwords rather than bytes. If the optional !ol
modifier is present, the data read is assumed to be in little
endian format; otherwise, the data read is assumed to be in
standard IEEE 488.2 format. The data will be byte swapped
and padded as appropriate to native computer format.

Byte order modifier !ob The data being read is assumed to be in standard IEEE 488.2
(big endian) format. This is the default behavior if neither !ob
nor !ol is present.

Byte order modifier !ol The data being read is assumed to be in little endian format.

Chapter 5 Operations

© National Instruments Corporation 5-127 NI-VISA Programmer Reference Manual

Related Items
See the viFlush(), viPrintf(), viSScanf(), viVScanf(), and viVSScanf()

descriptions in this chapter, and the VI_ATTR_RD_BUF_OPER_MODE description in Chapter 3,
Attributes. Also see the INSTR Resource, INTFC Resource, SERVANT Resource, and
SOCKET Resource descriptions in Appendix B, Resources, and refer to your ANSI C
documentation for information on the scanf function.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-128 ni.com

viSetAttribute

Purpose
Sets the state of an attribute.

C Syntax
ViStatus viSetAttribute(ViObject vi, ViAttr attribute,

ViAttrState attrState)

Visual Basic Syntax
viSetAttribute&(ByVal vi&, ByVal attribute&, ByVal attrState&)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

attribute IN Attribute for which the state is to be modified.

attrState IN The state of the attribute to be set for the specified object.
The interpretation of the individual attribute value is
defined by the object.

Completion Codes Description

VI_SUCCESS Attribute value set successfully.

VI_WARN_NSUP_ATTR_STATE Although the specified attribute state is valid, it is
not supported by this implementation.

Chapter 5 Operations

© National Instruments Corporation 5-129 NI-VISA Programmer Reference Manual

Description
The viSetAttribute() operation is used to modify the state of an attribute for the specified
object.

Both VI_WARN_NSUP_ATTR_STATE and VI_ERROR_NSUP_ATTR_STATE indicate that
the specified attribute state is not supported. A resource normally returns the error code
VI_ERROR_NSUP_ATTR_STATEwhen it cannot set a specified attribute state. The completion
code VI_WARN_NSUP_ATTR_STATE is intended to alert the application that although the
specified optional attribute state is not supported, the application should not fail. One example
is attempting to set an attribute value that would increase performance speeds. This is
different than attempting to set an attribute value that specifies required but nonexistent
hardware (such as specifying a VXI ECL trigger line when no hardware support exists) or a
value that would change assumptions a resource might make about the way data is stored or
formatted (such as byte order).

Related Items
See the viGetAttribute() description in this chapter. Also see the VISA Resource
Template description in Appendix B, Resources, and the attribute descriptions in Chapter 3,
Attributes.

Error Codes Description

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the
referenced object.

VI_ERROR_NSUP_ATTR_STATE The specified state of the attribute is not valid, or is
not supported as defined by the object.

VI_ERROR_ATTR_READONLY The specified attribute is read-only.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-130 ni.com

viSetBuf

Purpose
Sets the size for the formatted I/O and/or low-level I/O communication buffer(s).

C Syntax
ViStatus viSetBuf(ViSession vi, ViUInt16 mask, ViUInt32 size)

Visual Basic Syntax
viSetBuf&(ByVal vi&, ByVal mask%, ByVal size&)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

mask IN Specifies the type of buffer.

size IN The size to be set for the specified buffer(s).

Completion Codes Description

VI_SUCCESS Buffer size set successfully.

VI_WARN_NSUP_BUF The specified buffer is not supported.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

Chapter 5 Operations

© National Instruments Corporation 5-131 NI-VISA Programmer Reference Manual

Description
The viSetBuf() operation changes the buffer size of the read and/or write buffer for
formatted I/O and/or serial communication. The mask parameter specifies the buffer for
which to set the size. The mask parameter can specify multiple buffers by bit-ORing any
of the following values together.

A call to viSetBuf() flushes the session’s related read/write buffer(s). Although you can
explicitly flush the buffers by making a call to viFlush(), the buffers are flushed implicitly
under some conditions. These conditions vary for the viPrintf() and viScanf()

operations.

Since not all serial drivers support user-defined buffer sizes, it is possible that a specific
implementation of VISA may not be able to control this feature. If an application requires a
specific buffer size for performance reasons, but a specific implementation of VISA cannot
guarantee that size, then it is recommended to use some form of handshaking to prevent
overflow conditions.

In previous versions of VISA, VI_IO_IN_BUF was known as VI_ASRL_IN_BUF and
VI_IO_OUT_BUF was known as VI_ASRL_OUT_BUF.

Related Items
See the viFlush(), viPrintf(), and viScanf() descriptions in this chapter, and the
VI_ATTR_RD_BUF_SIZE and VI_ATTR_WR_BUF_SIZE descriptions in Chapter 3,
Attributes. Also see the INSTR Resource, INTFC Resource, SERVANT Resource, and
SOCKET Resource descriptions in Appendix B, Resources.

VI_ERROR_ALLOC The system could not allocate the buffer(s) of the
specified size because of insufficient resources.

VI_ERROR_INV_MASK The system cannot set the buffer for the given
mask.

Flags Interpretation

VI_READ_BUF (1) Formatted I/O read buffer.

VI_WRITE_BUF (2) Formatted I/O write buffer.

VI_IO_IN_BUF (16) I/O communication receive buffer.

VI_IO_OUT_BUF (32) I/O communication transmit buffer.

Error Codes Description

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-132 ni.com

viSPrintf

Purpose
Converts, formats, and sends the parameters (designated by ...) to a user-specified buffer as
specified by the format string.

C Syntax
ViStatus viSPrintf(ViSession vi, ViPBuf buf, ViString writeFmt, ...)

Visual Basic Syntax
N/A

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

buf OUT Buffer where data is to be written.

writeFmt IN The format string to apply to parameters in ViVAList.

... IN Parameters to which the format string is applied.
The formatted data is written to the specified buf.

Completion Codes Description

VI_SUCCESS Parameters were successfully formatted.

Chapter 5 Operations

© National Instruments Corporation 5-133 NI-VISA Programmer Reference Manual

Description
The viSPrintf() operation is similar to viPrintf(), except that the output is not written
to the device; it is written to the user-specified buffer. This output buffer will be NULL
terminated.

If this operation outputs an END indicator before all the arguments are satisfied, then the rest
of the writeFmt string is ignored and the buffer string is still terminated by a NULL.

Note The size of the buf parameter should be large enough to hold the formatted I/O
contents plus the NULL termination character.

Related Items
See the viPrintf(), viSScanf(), viVPrintf(), and viVSPrintf() descriptions in this
chapter. Also see the INSTR Resource, INTFC Resource, SERVANT Resource, and SOCKET
Resource descriptions in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-134 ni.com

viSScanf

Purpose
Reads, converts, and formats data from a user-specified buffer using the format specifier.
Stores the formatted data in the parameters (designated by ...).

C Syntax
ViStatus viSScanf(ViSession vi, ViBuf buf, ViString readFmt, ...)

Visual Basic Syntax
N/A

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR,
TCPIP INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

buf IN Buffer from which data is read and formatted.

readFmt IN String describing the format for arguments.

... OUT Parameters into which the data is read and the format
string is applied.

Completion Codes Description

VI_SUCCESS Data was successfully read and formatted into ...
parameter(s).

Chapter 5 Operations

© National Instruments Corporation 5-135 NI-VISA Programmer Reference Manual

Description
The viSScanf() operation is similar to viScanf(), except that the data is read from a
user-specified buffer rather than from a device.

Related Items
See the viScanf(), viSPrintf(), viVScanf(), and viVSScanf() descriptions in this
chapter. Also see the INSTR Resource, INTFC Resource, SERVANT Resource, and SOCKET
Resource descriptions in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-136 ni.com

viStatusDesc

Purpose
Returns a user-readable description of the status code passed to the operation.

C Syntax
ViStatus viStatusDesc(ViObject vi, ViStatus status, ViChar desc[])

Visual Basic Syntax
viStatusDesc&(ByVal vi&, ByVal status&, ByVal desc$)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

status IN Status code to interpret.

desc OUT The user-readable string interpretation of the status code
passed to the operation.

Completion Codes Description

VI_SUCCESS Description successfully returned.

VI_WARN_UNKNOWN_STATUS The status code passed to the operation could not be
interpreted.

Chapter 5 Operations

© National Instruments Corporation 5-137 NI-VISA Programmer Reference Manual

Description
The viStatusDesc() operation is used to retrieve a user-readable string that describes the
status code presented. If the string cannot be interpreted, the operation returns the warning
code VI_WARN_UNKNOWN_STATUS. However, the output string desc is valid regardless of the
status return value.

Note The size of the desc parameter should be at least 256 bytes.

Related Items
See Appendix A, Status Codes, for a complete list of the possible status codes for each
operation. Also see the VISA Resource Template description in Appendix B, Resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-138 ni.com

viTerminate

Purpose
Requests a VISA session to terminate normal execution of an operation.

C Syntax
ViStatus viTerminate(ViObject vi, ViUInt16 degree, ViJobId jobId)

Visual Basic Syntax
N/A

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

degree IN VI_NULL (0).

jobId IN Specifies an operation identifier.

Completion Codes Description

VI_SUCCESS Request serviced successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_JOB_ID Specified job identifier is invalid.

VI_ERROR_INV_DEGREE Specified degree is invalid.

Chapter 5 Operations

© National Instruments Corporation 5-139 NI-VISA Programmer Reference Manual

Description
This operation is used to request a session to terminate normal execution of an operation, as
specified by the jobId parameter. The jobId parameter is a unique value generated from each
call to an asynchronous operation.

If a user passes VI_NULL as the jobId value to viTerminate(), VISA will abort any calls
in the current process executing on the specified vi. Any call that is terminated this way should
return VI_ERROR_ABORT. Due to the nature of multi-threaded systems, for example where
operations in other threads may complete normally before the operation viTerminate() has
any effect, the specified return value is not guaranteed.

Related Items
See the viReadAsync(), viWriteAsync(), and viMoveAsync() descriptions in this
chapter. See the VI_EVENT_IO_COMPLETION description in Chapter 4, Events. Also see
the VISA Resource Template description in Appendix B, Resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-140 ni.com

viUninstallHandler

Purpose
Uninstalls handlers for events.

C Syntax
ViStatus viUninstallHandler(ViSession vi, ViEventType eventType,

ViHndlr handler, ViAddr userHandle)

Visual Basic Syntax
N/A

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

handler IN Interpreted as a valid reference to a handler to be
uninstalled by a client application.

userHandle IN A value specified by an application that can be used for
identifying handlers uniquely in a session for an event.

Completion Codes Description

VI_SUCCESS Event handler successfully uninstalled.

Chapter 5 Operations

© National Instruments Corporation 5-141 NI-VISA Programmer Reference Manual

Description
The viUninstallHandler() operation allows applications to uninstall handlers for
events on sessions. Applications should also specify the value in the userHandle parameter
that was passed while installing the handler. VISA identifies handlers uniquely using the
handler reference and this value. All the handlers, for which the handler reference and the
value matches, are uninstalled. Specifying VI_ANY_HNDLR as the value for the handler
parameter causes the operation to uninstall all the handlers with the matching value in the
userHandle parameter.

Note Calling viUninstallHandler() removes the specified handler from the list of
active handlers on the given session. If no handlers remain for the specified event type, the
VISA driver disables that event type on the given session. It is not valid for a user to call
this operation from within a callback, because this may cause a deadlock condition within
the VISA driver.

Related Items
See the viInstallHandler() and viDisableEvent() descriptions in this chapter, and
see the viEventHandler() description for its parameter description. Also see the VISA
Resource Template description in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_INV_EVENT Specified event type is not supported by the
resource.

VI_ERROR_INV_HNDLR_REF Either the specified handler reference or the user
context value (or both) does not match any installed
handler.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified
event.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-142 ni.com

viUnlock

Purpose
Relinquishes a lock for the specified resource.

C Syntax
ViStatus viUnlock(ViSession vi)

Visual Basic Syntax
viUnlock&(ByVal vi&)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

Completion Codes Description

VI_SUCCESS Lock successfully relinquished.

VI_SUCCESS_NESTED_EXCLUSIVE Call succeeded, but this session still has nested
exclusive locks.

VI_SUCCESS_NESTED_SHARED Call succeeded, but this session still has nested
shared locks.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_SESN_NLOCKED The current session did not have any lock on the
resource.

Chapter 5 Operations

© National Instruments Corporation 5-143 NI-VISA Programmer Reference Manual

Description
This operation is used to relinquish the lock previously obtained using the viLock()
operation.

Related Items
See the viLock() description in this chapter. Also see the VISA Resource Template
description in Appendix B, Resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-144 ni.com

viUnmapAddress

Purpose
Unmaps memory space previously mapped by viMapAddress().

C Syntax
ViStatus viUnmapAddress(ViSession vi)

Visual Basic Syntax
viUnmapAddress&(ByVal vi&)

Resource Classes
GPIB-VXI INSTR, GPIB-VXI MEMACC, PXI INSTR, VXI INSTR, VXI MEMACC

Parameters

Return Values

Description
The viUnmapAddress() operation unmaps the region previously mapped by the
viMapAddress() operation for this session.

Name Direction Description

vi IN Unique logical identifier to a session.

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_WINDOW_NMAPPED The specified session is not currently mapped.

Chapter 5 Operations

© National Instruments Corporation 5-145 NI-VISA Programmer Reference Manual

Related Items
See the viMapAddress() description in this chapter. Also see the INSTR Resource and
MEMACC Resource descriptions in Appendix B, Resources.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-146 ni.com

viUnmapTrigger

Purpose

Undo a previous map from the specified trigger source line to the specified destination line.

C Syntax
ViStatus viUnmapTrigger(ViSession vi, ViInt16 trigSrc,

ViInt16 trigDest)

Visual Basic Syntax
viUnmapTrigger&(ByVal vi&, ByVal trigSrc%, ByVal trigDest%)

Resource Classes
GPIB-VXI BACKPLANE, VXI BACKPLANE

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

trigSrc IN Source line used in previous map. See the Description
section for actual values.

trigDest IN Destination line used in previous map. See the
Description section for actual values.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Chapter 5 Operations

© National Instruments Corporation 5-147 NI-VISA Programmer Reference Manual

Description
This operation can be used to undo a previous mapping of one trigger line to another. This
operation is valid only on BACKPLANE (mainframe) sessions.

Special Values for trigSrc Parameters

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_LINE One of the specified lines (trigSrc or trigDest) is
invalid.

VI_ERROR_TRIG_NMAPPED The path from trigSrc to trigDest is not currently
mapped.

VI_ERROR_NSUP_LINE One of the specified lines (trigSrc or trigDest) is
not supported by this VISA implementation.

Value Action Description

VI_TRIG_TTL0 –

VI_TRIG_TTL7

Unmap the specified VXI TTL trigger line.

VI_TRIG_ECL0 –

VI_TRIG_ECL1

Unmap the specified VXI ECL trigger line.

VI_TRIG_PANEL_IN Unmap the controller’s front panel trigger input
line.

VI_TRIG_PANEL_OUT Unmap the controller’s front panel trigger output
line.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-148 ni.com

Special Values for trigDest Parameters

This operation unmaps only one trigger mapping per call. In other words, if
viMapTrigger() was called multiple times on the same BACKPLANE Resource and
created multiple mappings for either trigSrc or trigDest, trigger mappings other than the
one specified by trigSrc and trigDest should remain in effect after this call completes.

Related Items
See viMapTrigger() from this chapter and the BACKPLANE Resource description in
Appendix B, Resources.

Value Action Description

VI_TRIG_TTL0 –

VI_TRIG_TTL7

Unmap the specified VXI TTL trigger line.

VI_TRIG_ECL0 –

VI_TRIG_ECL1

Unmap the specified VXI ECL trigger line.

VI_TRIG_PANEL_IN Unmap the controller’s front panel trigger input
line.

VI_TRIG_PANEL_OUT Unmap the controller’s front panel trigger output
line.

VI_TRIG_ALL Unmap all trigger lines to which trigSrc is
currently connected.

Chapter 5 Operations

© National Instruments Corporation 5-149 NI-VISA Programmer Reference Manual

viVPrintf

Purpose
Converts, formats, and sends the parameters designated by params to the device or interface
as specified by the format string.

C Syntax
ViStatus viVPrintf(ViSession vi, ViString writeFmt, ViVAList params)

Visual Basic Syntax
viVPrintf&(ByVal vi&, ByVal writeFmt$, params as Any)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

writeFmt IN String describing the format to apply to params.

params IN A list containing the variable number of parameters on
which the format string is applied. The formatted data is
written to the specified device.

Completion Codes Description

VI_SUCCESS Parameters were successfully formatted.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-150 ni.com

Description
This operation is similar to viPrintf(), except that the params parameters list provides the
parameters rather than separate arg parameters.

Related Items
See the viPrintf(), viSPrintf(), viVSPrintf(), and viVSScanf() descriptions in
this chapter. Also see the INSTR Resource, INTFC Resource, SERVANT Resource, and
SOCKET Resource descriptions in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_IO Could not perform write operation because of
I/O error.

VI_ERROR_TMO Timeout expired before write operation completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

Chapter 5 Operations

© National Instruments Corporation 5-151 NI-VISA Programmer Reference Manual

viVQueryf

Purpose
Performs a formatted write and read through a single call to an operation.

C Syntax
ViStatus viVQueryf(ViSession vi, ViString writeFmt, ViString readFmt,

ViVAList params)

Visual Basic Syntax
viVQueryf&(ByVal vi&, ByVal writeFmt$, ByVal readFmt$, params as Any)

Resource Classes
GPIB INSTR, GPIB-VXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET, VXI
INSTR, VXI SERVANT

Parameters

Name Direction Description

vi IN Unique logical identifier to a session.

writeFmt IN String describing the format of write arguments.

readFmt IN String describing the format of read arguments.

params IN/OUT A list containing the variable number of write and read
parameters. The write parameters are formatted and
written to the specified device. The read parameters store
the data read from the device after the format string is
applied to the data.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-152 ni.com

Return Values

Description
This operation is similar to viQueryf(), except that the params parameters list provides the
parameters rather than the separate arg parameter list.

Note Because the prototype for this function cannot provide complete type-checking,
remember that all output parameters must be passed by reference.

Related Items
See the viQueryf() description in this chapter. Also see the INSTR Resource and SOCKET
Resource descriptions in Appendix B, Resources.

Completion Codes Description

VI_SUCCESS Successfully completed the query operation.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_IO Could not perform read/write operation because of
I/O error.

VI_ERROR_TMO Timeout occurred before read/write operation
completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt
string is invalid.

VI_ERROR_NSUP_FMT The format specifier is not supported for current
argument type.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

Chapter 5 Operations

© National Instruments Corporation 5-153 NI-VISA Programmer Reference Manual

viVScanf

Purpose
Reads, converts, and formats data using the format specifier. Stores the formatted data in the
parameters designated by params.

C Syntax
ViStatus viVScanf(ViSession vi, ViString readFmt, ViVAList params)

Visual Basic Syntax
viVScanf&(ByVal vi&, ByVal readFmt$, params as Any)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR, TCPIP
INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

readFmt IN String describing the format to apply to params.

params OUT A list with the variable number of parameters into which
the data is read and the format string is applied.

Completion Codes Description

VI_SUCCESS Data was successfully read and formatted into
params parameter(s).

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-154 ni.com

Description
This operation is similar to viScanf(), except that the params parameters list provides the
parameters rather than separate arg parameters.

Note Because the prototype for this function cannot provide complete type-checking,
remember that all output parameters must be passed by reference.

Related Items
See the viScanf(), viSScanf(), viVPrintf(), and viVSScanf() descriptions in this
chapter. Also see the INSTR Resource, INTFC Resource, SERVANT Resource, and SOCKET
Resource descriptions in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_IO Could not perform read operation because of
I/O error.

VI_ERROR_TMO Timeout expired before read operation completed.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

Chapter 5 Operations

© National Instruments Corporation 5-155 NI-VISA Programmer Reference Manual

viVSPrintf

Purpose
Converts, formats, and sends the parameters designated by params to a user-specified buffer
as specified by the format string.

C Syntax
ViStatus viVSPrintf(ViSession vi, ViPBuf buf, ViString writeFmt,

ViVAList params)

Visual Basic Syntax
viVSPrintf&(ByVal vi&, ByVal buf$, ByVal writeFmt$, params as Any)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR,
TCPIP INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

buf OUT Buffer where data is to be written.

writeFmt IN The format string to apply to parameters in ViVAList.

params IN A list containing the variable number of parameters on
which the format string is applied. The formatted data is
written to the specified buf.

Completion Codes Description

VI_SUCCESS Parameters were successfully formatted.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-156 ni.com

Description
This operation is similar to viVPrintf(), except that the output is not written to the device;
it is written to the user-specified buffer. This output buffer is NULL terminated.

If this operation outputs an END indicator before all the arguments are satisfied, then the rest
of the writeFmt string is ignored and the buffer string is still terminated by a NULL.

Note The size of the buf parameter should be large enough to hold the formatted I/O
contents plus the NULL termination character.

Related Items
See the viPrintf(), viSPrintf(), viVPrintf(), and viVSScanf() descriptions in this
chapter. Also see the INSTR Resource, INTFC Resource, SERVANT Resource, and SOCKET
Resource descriptions in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

Chapter 5 Operations

© National Instruments Corporation 5-157 NI-VISA Programmer Reference Manual

viVSScanf

Purpose
Reads, converts, and formats data from a user-specified buffer using the format specifier.
Stores the formatted data in the parameters designated by params.

C Syntax
ViStatus viVSScanf(ViSession vi, ViBuf buf, ViString readFmt,

ViVAList params)

Visual Basic Syntax
viVSScanf&(ByVal vi&, ByVal buf$, ByVal readFmt$, params as Any)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR,
TCPIP INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

buf IN Buffer from which data is read and formatted.

readFmt IN String describing the format to apply to params.

params OUT A list with the variable number of parameters into which
the data is read and the format string is applied.

Completion Codes Description

VI_SUCCESS Data was successfully read and formatted into
params parameter(s).

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-158 ni.com

Description
The viVSScanf() operation is similar to viVScanf(), except that the data is read from a
user-specified buffer rather than a device.

Note Because the prototype for this function cannot provide complete type checking,
remember that all output parameters must be passed by reference.

Related Items
See the viScanf(), viSScanf(), viVSPrintf(), and viVScanf() descriptions in this
chapter. Also see the INSTR Resource, INTFC Resource, SERVANT Resource, and SOCKET
Resource descriptions in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

Chapter 5 Operations

© National Instruments Corporation 5-159 NI-VISA Programmer Reference Manual

viVxiCommandQuery

Purpose
Sends the device a miscellaneous command or query and/or retrieves the response to a
previous query.

C Syntax
ViStatus viVxiCommandQuery(ViSession vi, ViUInt16 mode,

ViUInt32 cmd, ViPUInt32 response)

Visual Basic Syntax
viVxiCommandQuery&(ByVal vi&, ByVal mode%, ByVal cmd&, response&)

Resource Classes
GPIB-VXI INSTR, VXI INSTR

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

mode IN Specifies whether to issue a command and/or retrieve a
response. See the Description section for actual values.

cmd IN The miscellaneous command to send.

response OUT The response retrieved from the device. If the mode
specifies to send a command rather than retrieve a
response, you can use VI_NULL for this parameter.

Completion Codes Description

VI_SUCCESS The operation completed successfully.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-160 ni.com

Description
The viVxiCommandQuery() operation can send a command or query, or receive a response
to a query previously sent to the device. The mode parameter specifies whether to issue a
command and/or retrieve a response, and indicates the type or size of command and/or
response to use. The following table defines the values for the mode parameter.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error during
transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_RESP_PENDING A previous response is still pending, causing a
multiple query error.

VI_ERROR_INV_MODE The value specified by the mode parameter is
invalid.

Mode Action Description

VI_VXI_CMD16 Send 16-bit Word Serial command.

VI_VXI_CMD16_RESP16 Send 16-bit Word Serial query; get 16-bit response.

VI_VXI_RESP16 Get 16-bit response from previous query.

VI_VXI_CMD32 Send 32-bit Word Serial command.

VI_VXI_CMD32_RESP16 Send 32-bit Word Serial query; get 16-bit response.

Chapter 5 Operations

© National Instruments Corporation 5-161 NI-VISA Programmer Reference Manual

Notice that the mode you specify can cause all or part of the cmd or response parameters to
be ignored.

• If mode specifies sending a 16-bit command, the upper half of cmd is ignored.

• If mode specifies retrieving a response only, cmd is ignored.

• If mode specifies sending a command only, response is ignored. You can use VI_NULL
for the value of response.

• If mode specifies to retrieve a 16-bit value, the upper half of response is set to 0.

Related Items
See the INSTR Resource description in Appendix B, Resources. Also refer to the VXI
Specification for defined Word Serial commands.

VI_VXI_CMD32_RESP32 Send 32-bit Word Serial query; get 32-bit response.

VI_VXI_RESP32 Get 32-bit response from previous query.

Mode Action Description

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-162 ni.com

viWaitOnEvent

Purpose
Waits for an occurrence of the specified event for a given session.

C Syntax
ViStatus viWaitOnEvent(ViSession vi, ViEventType inEventType,

ViUInt32 timeout, ViPEventType outEventType, ViPEvent outContext)

Visual Basic Syntax
viWaitOnEvent&(ByVal vi&, ByVal inEventType&, ByVal timeout&,

outEventType&, outContext&)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, GPIB-VXI MEMACC,
GPIB-VXI BACKPLANE, PXI INSTR, Serial INSTR, TCPIP INSTR, TCPIP SOCKET,
VXI INSTR, VXI MEMACC, VXI BACKPLANE, VXI SERVANT

Parameters

Name Direction Description

vi IN Unique logical identifier to a session.

inEventType IN Logical identifier of the event(s) to wait for.

timeout IN Absolute time period in time units that the resource shall
wait for a specified event to occur before returning the
time elapsed error. The time unit is in milliseconds.

outEventType OUT Logical identifier of the event actually received.

outContext OUT A handle specifying the unique occurrence of an event.

Chapter 5 Operations

© National Instruments Corporation 5-163 NI-VISA Programmer Reference Manual

Return Values

Description
The viWaitOnEvent() operation suspends the execution of a thread of an application
and waits for an event of the type specified by inEventType for a time period specified by
timeout. You can wait only for events that have been enabled with the viEnableEvent()
operation. Refer to individual event descriptions for context definitions. If the specified
inEventType is VI_ALL_ENABLED_EVENTS, the operation waits for any event that is enabled
for the given session. If the specified timeout value is VI_TMO_INFINITE, the operation is
suspended indefinitely. If the specified timeout value is VI_TMO_IMMEDIATE, the operation
is not suspended; therefore, this value can be used to dequeue events from an event queue.

When the outContext handle returned from a successful invocation of viWaitOnEvent()
is no longer needed, it should be passed to viClose().

If a session’s event queue becomes full and a new event arrives, the new event is discarded.
The default event queue size (per session) is 50, which is sufficiently large for most
applications. If an application expects more than 50 events to arrive without having been
handled, it can modify the value of the attribute VI_ATTR_MAX_QUEUE_LENGTH to the
required size.

Completion Codes Description

VI_SUCCESS Wait terminated successfully on receipt of an event
occurrence. The queue is empty.

VI_SUCCESS_QUEUE_NEMPTY Wait terminated successfully on receipt of an event
notification. There is still at least one more event
occurrence of the type specified by inEventType
available for this session.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_INV_EVENT Specified event type is not supported by the
resource.

VI_ERROR_TMO Specified event did not occur within the specified
time period.

VI_ERROR_NENABLED The session must be enabled for events of the
specified type in order to receive them.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-164 ni.com

The outEventType and outContext parameters are optional and can be VI_NULL. This can
be used if the event type is known from the inEventType parameter, or if the outContext
handle is not needed to retrieve additional information. If VI_NULL is used for the
outContext parameter, VISA will automatically close the event context.

Related Items
See the viEnableEvent() and viClose() descriptions in this chapter. See the
VI_ATTR_MAX_QUEUE_LENGTH description in Chapter 3, Attributes. See Chapter 4, Events,
for a list of events that you can wait for. Also see the VISA Resource Template, description in
Appendix B, Resources.

Chapter 5 Operations

© National Instruments Corporation 5-165 NI-VISA Programmer Reference Manual

viWrite

Purpose
Writes data to device or interface synchronously.

C Syntax
ViStatus viWrite(ViSession vi, ViBuf buf, ViUInt32 count,

ViPUInt32 retCount)

Visual Basic Syntax
viWrite&(ByVal vi&, ByVal buf$, ByVal count&, retCount&)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR,
TCPIP INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

buf IN Location of a data block to be sent to a device.

count IN Number of bytes to be written.

retCount OUT Number of bytes actually transferred.

Completion Codes Description

VI_SUCCESS Transfer completed.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-166 ni.com

Description
The viWrite() operation synchronously transfers data. The data to be written is in the buffer
represented by buf. This operation returns only when the transfer terminates. Only one
synchronous write operation can occur at any one time.

Related Items
See the viRead(), viBufWrite(), viWriteAsync(), and viWriteFromFile()

descriptions in this chapter. Also see the INSTR Resource, INTFC Resource, SERVANT
Resource, and SOCKET Resource descriptions in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to start write operation because setup is
invalid (due to attributes being set to an inconsistent
state).

VI_ERROR_NCIC The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS No-listeners condition is detected (both NRFD and
NDAC are unasserted).

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_CONN_LOST The I/O connection for the given session has been
lost.

Chapter 5 Operations

© National Instruments Corporation 5-167 NI-VISA Programmer Reference Manual

viWriteAsync

Purpose
Writes data to device or interface asynchronously.

C Syntax
ViStatus viWriteAsync(ViSession vi, ViBuf buf, ViUInt32 count,

ViPJobId jobId)

Visual Basic Syntax
N/A

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR,
TCPIP INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

buf IN Location of a data block to be sent to a device.

count IN Number of bytes to be written.

jobId OUT Job ID of this asynchronous write operation.

Completion Codes Description

VI_SUCCESS Asynchronous write operation successfully queued.

VI_SUCCESS_SYNC Write operation performed synchronously.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-168 ni.com

Description
The viWriteAsync() operation asynchronously transfers data. The data to be written is in
the buffer represented by buf. This operation normally returns before the transfer terminates.

Before calling this operation, you should enable the session for receiving I/O completion
events. After the transfer has completed, an I/O completion event is posted.

The operation returns a job identifier that you can use with either viTerminate() to abort
the operation or with an I/O completion event to identify which asynchronous write operation
completed. VISA will never return VI_NULL for a valid jobId.

Note If you have enabled VI_EVENT_IO_COMPLETION for queueing (VI_QUEUE), for
each successful call to viWriteAsync(), you must call viWaitOnEvent() to retrieve
the I/O completion event. This is true even if the I/O is done synchronously (that is, if the
operation returns VI_SUCCESS_SYNC). If you are using LabVIEW, this is done for you
automatically.

Related Items
See the viEnableEvent(), viWrite(), viTerminate(), viReadAsync(), and
viWaitOnEvent() descriptions in this chapter. Also see the VI_EVENT_IO_COMPLETION
description in Chapter 4, Events, and see the INSTR Resource, INTFC Resource, SERVANT
Resource, and SOCKET Resource descriptions in Appendix B, Resources.

Error Codes Description

VI_ERROR_INV_OBJECT The given session reference is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_QUEUE_ERROR Unable to queue write operation.

VI_ERROR_IN_PROGRESS Unable to queue the asynchronous operation
because there is already an operation in progress.

Chapter 5 Operations

© National Instruments Corporation 5-169 NI-VISA Programmer Reference Manual

viWriteFromFile

Purpose

Take data from a file and write it out synchronously.

C Syntax
viStatus viWriteFromFile(ViSession vi, ViString fileName, ViUInt32

count, ViPUInt32 retCount)

Visual Basic Syntax
viWriteFrom File&(ByVal vi&, ByVal filename$, ByVal count&, retCount&)

Resource Classes
GPIB INSTR, GPIB INTFC, GPIB SERVANT, GPIB-VXI INSTR, Serial INSTR,
TCPIP INSTR, TCPIP SOCKET, VXI INSTR, VXI SERVANT

Parameters

Return Values

Name Direction Description

vi IN Unique logical identifier to a session.

fileName IN Name of file from which data will be read.

count IN Number of bytes to be written.

retCount OUT Number of bytes actually transferred.

Completion Code Description

VI_SUCCESS Transfer completed.

Chapter 5 Operations

NI-VISA Programmer Reference Manual 5-170 ni.com

Error Codes Description

VI_ERROR_INV_OBJECT The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this
operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_TMO Timeout expired before operation
completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred
during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred
during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error
during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is
not currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_IO An unknown I/O error occurred during
transfer.

VI_ERROR_FILE_ACCESS An error occurred while trying to open the
specified file. Possible reasons include an
invalid path or lack of access rights.

VI_ERROR_FILE_IO An error occurred while accessing the
specified file.

VI_ERROR_CONN_LOST The I/O connection for the given session
has been lost.

Chapter 5 Operations

© National Instruments Corporation 5-171 NI-VISA Programmer Reference Manual

Description
This write operation synchronously transfers data. The file specified in fileName is opened
in binary read-only mode, and the data (up to end-of-file or the number of bytes specified in
count) is read. The data is then written to the device. This operation returns only when the
transfer terminates.

This operation is useful for sending data that was already processed and/or formatted.

Special Values for retCount Parameter

If you pass VI_NULL as the retCount parameter to the viWriteFromFile() operation, the
number of bytes transferred will not be returned. This may be useful if it is important to know
only whether the operation succeeded or failed.

Related Items
See viWrite() and viReadToFile() in this chapter. Also see the INSTR Resource, INTFC
Resource, SERVANT Resource, and SOCKET Resource descriptions in Appendix B,
Resources.

Value Action Description

VI_NULL Do not return the number of bytes
transferred.

© National Instruments Corporation A-1 NI-VISA Programmer Reference Manual

A
Status Codes

This appendix lists and describes the completion and error codes.

Table A-1. Completion Codes

Completion Codes Values Meaning

VI_SUCCESS 0 Operation completed successfully.

VI_SUCCESS_EVENT_EN 3FFF0002h Specified event is already enabled for at
least one of the specified mechanisms.

VI_SUCCESS_EVENT_DIS 3FFF0003h Specified event is already disabled for
at least one of the specified
mechanisms.

VI_SUCCESS_QUEUE_EMPTY 3FFF0004h Operation completed successfully,
but queue was already empty.

VI_SUCCESS_TERM_CHAR 3FFF0005h The specified termination character
was read.

VI_SUCCESS_MAX_CNT 3FFF0006h The number of bytes read is equal to
the input count.

VI_WARN_CONFIG_NLOADED 3FFF0077h The specified configuration either does
not exist or could not be loaded; using
VISA-specified defaults.

VI_SUCCESS_DEV_NPRESENT 3FFF007Dh Session opened successfully, but the
device at the specified address is not
responding.

VI_SUCCESS_TRIG_MAPPED 3FFF007Eh The path from trigSrc to trigDest is
already mapped.

VI_SUCCESS_QUEUE_NEMPTY 3FFF0080h Wait terminated successfully on receipt
of an event notification. There is still at
least one more event occurrence of the
requested type(s) available for this
session.

Appendix A Status Codes

NI-VISA Programmer Reference Manual A-2 ni.com

VI_WARN_NULL_OBJECT 3FFF0082h The specified object reference is
uninitialized.

VI_WARN_NSUP_ATTR_STATE 3FFF0084h Although the specified state of the
attribute is valid, it is not supported by
this resource implementation.

VI_WARN_UNKNOWN_STATUS 3FFF0085h The status code passed to the operation
could not be interpreted.

VI_WARN_NSUP_BUF 3FFF0088h The specified buffer is not supported.

VI_SUCCESS_NCHAIN 3FFF0098h Event handled successfully. Do not
invoke any other handlers on this
session for this event.

VI_SUCCESS_NESTED_SHARED 3FFF0099h Operation completed successfully, and
this session has nested shared locks.

VI_SUCCESS_NESTED_EXCLUSIVE 3FFF009Ah Operation completed successfully, and
this session has nested exclusive locks.

VI_SUCCESS_SYNC 3FFF009Bh Asynchronous operation request was
actually performed synchronously.

Table A-2. Error Codes

Error Codes Values Meaning

VI_ERROR_SYSTEM_ERROR BFFF0000h Unknown system error (miscellaneous
error).

VI_ERROR_INV_OBJECT BFFF000Eh The given session or object reference is
invalid.

VI_ERROR_RSRC_LOCKED BFFF000Fh Specified type of lock cannot be
obtained or specified operation cannot
be performed, because the resource is
locked.

VI_ERROR_INV_EXPR BFFF0010h Invalid expression specified for search.

VI_ERROR_RSRC_NFOUND BFFF0011h Insufficient location information or the
device or resource is not present in the
system.

Table A-1. Completion Codes (Continued)

Completion Codes Values Meaning

Appendix A Status Codes

© National Instruments Corporation A-3 NI-VISA Programmer Reference Manual

VI_ERROR_INV_RSRC_NAME BFFF0012h Invalid resource reference specified.
Parsing error.

VI_ERROR_INV_ACC_MODE BFFF0013h Invalid access mode.

VI_ERROR_TMO BFFF0015h Timeout expired before operation
completed.

VI_ERROR_CLOSING_FAILED BFFF0016h Unable to deallocate the previously
allocated data structures corresponding
to this session or object reference.

VI_ERROR_INV_DEGREE BFFF001Bh Specified degree is invalid.

VI_ERROR_INV_JOB_ID BFFF001Ch Specified job identifier is invalid.

VI_ERROR_NSUP_ATTR BFFF001Dh The specified attribute is not defined or
supported by the referenced session,
event, or find list.

VI_ERROR_NSUP_ATTR_STATE BFFF001Eh The specified state of the attribute is not
valid, or is not supported as defined by
the session, event, or find list.

VI_ERROR_ATTR_READONLY BFFF001Fh The specified attribute is read-only.

VI_ERROR_INV_LOCK_TYPE BFFF0020h The specified type of lock is not
supported by this resource.

VI_ERROR_INV_ACCESS_KEY BFFF0021h The access key to the resource
associated with this session is invalid.

VI_ERROR_INV_EVENT BFFF0026h Specified event type is not supported by
the resource.

VI_ERROR_INV_MECH BFFF0027h Invalid mechanism specified.

VI_ERROR_HNDLR_NINSTALLED BFFF0028h A handler is not currently installed for
the specified event.

VI_ERROR_INV_HNDLR_REF BFFF0029h The given handler reference is invalid.

VI_ERROR_INV_CONTEXT BFFF002Ah Specified event context is invalid.

VI_ERROR_QUEUE_OVERFLOW BFFF002Dh The event queue for the specified type
has overflowed (usually due to previous
events not having been closed).

Table A-2. Error Codes (Continued)

Error Codes Values Meaning

Appendix A Status Codes

NI-VISA Programmer Reference Manual A-4 ni.com

VI_ERROR_NENABLED BFFF002Fh The session must be enabled for events
of the specified type in order to receive
them.

VI_ERROR_ABORT BFFF0030h The operation was aborted.

VI_ERROR_RAW_WR_PROT_VIOL BFFF0034h Violation of raw write protocol
occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL BFFF0035h Violation of raw read protocol occurred
during transfer.

VI_ERROR_OUTP_PROT_VIOL BFFF0036h Device reported an output protocol
error during transfer.

VI_ERROR_INP_PROT_VIOL BFFF0037h Device reported an input protocol error
during transfer.

VI_ERROR_BERR BFFF0038h Bus error occurred during transfer.

VI_ERROR_IN_PROGRESS BFFF0039h Unable to queue the asynchronous
operation because there is already an
operation in progress.

VI_ERROR_INV_SETUP BFFF003Ah Unable to start operation because setup
is invalid (due to attributes being set to
an inconsistent state).

VI_ERROR_QUEUE_ERROR BFFF003Bh Unable to queue asynchronous
operation.

VI_ERROR_ALLOC BFFF003Ch Insufficient system resources to
perform necessary memory allocation.

VI_ERROR_INV_MASK BFFF003Dh Invalid buffer mask specified.

VI_ERROR_IO BFFF003Eh Could not perform operation because of
I/O error.

VI_ERROR_INV_FMT BFFF003Fh A format specifier in the format string
is invalid.

VI_ERROR_NSUP_FMT BFFF0041h A format specifier in the format string
is not supported.

VI_ERROR_LINE_IN_USE BFFF0042h The specified trigger line is currently
in use.

Table A-2. Error Codes (Continued)

Error Codes Values Meaning

Appendix A Status Codes

© National Instruments Corporation A-5 NI-VISA Programmer Reference Manual

VI_ERROR_NSUP_MODE BFFF0046h The specified mode is not supported by
this VISA implementation.

VI_ERROR_SRQ_NOCCURRED BFFF004Ah Service request has not been received
for the session.

VI_ERROR_INV_SPACE BFFF004Eh Invalid address space specified.

VI_ERROR_INV_OFFSET BFFF0051h Invalid offset specified.

VI_ERROR_INV_WIDTH BFFF0052h Invalid source or destination width
specified.

VI_ERROR_NSUP_OFFSET BFFF0054h Specified offset is not accessible from
this hardware.

VI_ERROR_NSUP_VAR_WIDTH BFFF0055h Cannot support source and destination
widths that are different.

VI_ERROR_WINDOW_NMAPPED BFFF0057h The specified session is not currently
mapped.

VI_ERROR_RESP_PENDING BFFF0059h A previous response is still pending,
causing a multiple query error.

VI_ERROR_NLISTENERS BFFF005Fh No Listeners condition is detected
(both NRFD and NDAC are deasserted).

VI_ERROR_NCIC BFFF0060h The interface associated with this
session is not currently the controller in
charge.

VI_ERROR_NSYS_CNTLR BFFF0061h The interface associated with this
session is not the system controller.

VI_ERROR_NSUP_OPER BFFF0067h The given session or object reference
does not support this operation.

VI_ERROR_INTR_PENDING BFFF0068h An interrupt is still pending from a
previous call.

VI_ERROR_ASRL_PARITY BFFF006Ah A parity error occurred during transfer.

VI_ERROR_ASRL_FRAMING BFFF006Bh A framing error occurred during
transfer.

Table A-2. Error Codes (Continued)

Error Codes Values Meaning

Appendix A Status Codes

NI-VISA Programmer Reference Manual A-6 ni.com

VI_ERROR_ASRL_OVERRUN BFFF006Ch An overrun error occurred during
transfer. A character was not read from
the hardware before the next character
arrived.

VI_ERROR_TRIG_NMAPPED BFFF006Eh The path from trigSrc to trigDest is not
currently mapped.

VI_ERROR_NSUP_ALIGN_OFFSET BFFF0070h The specified offset is not properly
aligned for the access width of the
operation.

VI_ERROR_USER_BUF BFFF0071h A specified user buffer is not valid or
cannot be accessed for the required
size.

VI_ERROR_RSRC_BUSY BFFF0072h The resource is valid, but VISA cannot
currently access it.

VI_ERROR_NSUP_WIDTH BFFF0076h Specified width is not supported by this
hardware.

VI_ERROR_INV_PARAMETER BFFF0078h The value of some parameter—which
parameter is not known—is invalid.

VI_ERROR_INV_PROT BFFF0079h The protocol specified is invalid.

VI_ERROR_INV_SIZE BFFF007Bh Invalid size of window specified.

VI_ERROR_WINDOW_MAPPED BFFF0080h The specified session currently
contains a mapped window.

VI_ERROR_NIMPL_OPER BFFF0081h The given operation is not
implemented.

VI_ERROR_INV_LENGTH BFFF0083h Invalid length specified.

VI_ERROR_INV_MODE BFFF0091h The specified mode is invalid.

VI_ERROR_SESN_NLOCKED BFFF009Ch The current session did not have any
lock on the resource.

VI_ERROR_MEM_NSHARED BFFF009Dh The device does not export any
memory.

VI_ERROR_LIBRARY_NFOUND BFFF009Eh A code library required by VISA could
not be located or loaded.

Table A-2. Error Codes (Continued)

Error Codes Values Meaning

Appendix A Status Codes

© National Instruments Corporation A-7 NI-VISA Programmer Reference Manual

VI_ERROR_NSUP_INTR BFFF009Fh The interface cannot generate an
interrupt on the requested level or with
the requested statusID value.

VI_ERROR_INV_LINE BFFF00A0h The value specified by the line
parameter is invalid.

VI_ERROR_FILE_ACCESS BFFF00A1h An error occurred while trying to open
the specified file. Possible reasons
include an invalid path or lack of access
rights.

VI_ERROR_FILE_IO BFFF00A2h An error occurred while performing I/O
on the specified file.

VI_ERROR_NSUP_LINE BFFF00A3h One of the specified lines (trigSrc or
trigDest) is not supported by this VISA
implementation, or the combination of
lines is not a valid mapping.

VI_ERROR_NSUP_MECH BFFF00A4h The specified mechanism is not
supported by the given event type.

VI_ERROR_INTF_NUM_NCONFIG BFFF00A5h The interface type is valid but the
specified interface number is not
configured.

VI_ERROR_CONN_LOST BFFF00A6h The connection for the given session
has been lost.

VI_ERROR_MACHINE_NAVAIL BFFF00A7h The remote machine does not exist or is
not accepting any connections.

VI_ERROR_NPERMISSION BFFF00A8h Access to the remote machine is
denied.

Table A-2. Error Codes (Continued)

Error Codes Values Meaning

© National Instruments Corporation B-1 NI-VISA Programmer Reference Manual

B
Resources

This appendix lists the attributes, events, and operations in each resource
in VISA. Refer to Chapter 3, Attributes, Chapter 4, Events, and Chapter 5,
Operations, for more details.

VISA Resource Template
This section lists the attributes, events, and operations for the VISA
Resource Template. The attributes, events, and operations in the VISA
Resource Template are available to all other resources.

Attributes
VI_ATTR_MAX_QUEUE_LENGTH

VI_ATTR_RM_SESSION

VI_ATTR_RSRC_CLASS

VI_ATTR_RSRC_IMPL_VERSION

VI_ATTR_RSRC_LOCK_STATE

VI_ATTR_RSRC_MANF_ID

VI_ATTR_RSRC_MANF_NAME

VI_ATTR_RSRC_NAME

VI_ATTR_RSRC_SPEC_VERSION

VI_ATTR_USER_DATA

Events
VI_EVENT_EXCEPTION

Operations
viClose(vi)

viDisableEvent(vi, eventType, mechanism)

viDiscardEvents(vi, eventType, mechanism)

viEnableEvent(vi, eventType, mechanism, context)

viGetAttribute(vi, attribute, attrState)

viInstallHandler(vi, eventType, handler,userHandle)

viLock(vi, lockType, timeout, requestedKey,

accessKey)

viSetAttribute(vi, attribute, attrState)

Appendix B Resources

NI-VISA Programmer Reference Manual B-2 ni.com

viStatusDesc(vi, status, desc)

viTerminate(vi, degree, jobId)

viUninstallHandler(vi, eventType, handler,

userHandle)

viUnlock(vi)

viWaitOnEvent(vi, inEventType, timeout,

outEventType, outContext)

VISA Resource Manager
This section lists the attributes, events, and operations for the VISA
Resource Manager. The attributes, events, and operations in the VISA
Resource Template are available to this resource in addition to the
operations listed below.

Attributes
The attributes for the VISA Resource Template are available to this
resource. This resource has no defined attributes of its own.

Events
None

Operations
viFindNext(findList, instrDesc)

viFindRsrc(sesn, expr, findList, retcnt,instrDesc)

viOpen(sesn, rsrcName, accessMode, timeout, vi)

viOpenDefaultRM(sesn)

viParseRsrc(sesn, rsrcName, intfType, intfNum)

INSTR Resource
This section lists the attributes, events, and operations for the INSTR
Resource. The attributes, events, and operations in the VISA Resource
Template are available to this resource in addition to the attributes and
operations listed below.

Attributes
VI_ATTR_ASRL_ALLOW_TRANSMIT

VI_ATTR_ASRL_AVAIL_NUM

VI_ATTR_ASRL_BAUD

VI_ATTR_ASRL_BREAK_LEN

Appendix B Resources

© National Instruments Corporation B-3 NI-VISA Programmer Reference Manual

VI_ATTR_ASRL_BREAK_STATE

VI_ATTR_ASRL_CTS_STATE

VI_ATTR_ASRL_DATA_BITS

VI_ATTR_ASRL_DCD_STATE

VI_ATTR_ASRL_DISCARD_NULL

VI_ATTR_ASRL_DSR_STATE

VI_ATTR_ASRL_DTR_STATE

VI_ATTR_ASRL_END_IN

VI_ATTR_ASRL_END_OUT

VI_ATTR_ASRL_FLOW_CNTRL

VI_ATTR_ASRL_PARITY

VI_ATTR_ASRL_REPLACE_CHAR

VI_ATTR_ASRL_RI_STATE

VI_ATTR_ASRL_RTS_STATE

VI_ATTR_ASRL_STOP_BITS

VI_ATTR_ASRL_WIRE_MODE

VI_ATTR_ASRL_XOFF_CHAR

VI_ATTR_ASRL_XON_CHAR

VI_ATTR_CMDR_LA

VI_ATTR_DEST_ACCESS_PRIV

VI_ATTR_DEST_BYTE_ORDER

VI_ATTR_DEST_INCREMENT

VI_ATTR_DMA_ALLOW_EN

VI_ATTR_FDC_CHNL

VI_ATTR_FDC_MODE

VI_ATTR_FDC_USE_PAIR

VI_ATTR_FILE_APPEND_EN

VI_ATTR_GPIB_PRIMARY_ADDR

VI_ATTR_GPIB_READDR_EN

VI_ATTR_GPIB_REN_STATE

VI_ATTR_GPIB_SECONDARY_ADDR

VI_ATTR_GPIB_UNADDR_EN

VI_ATTR_IMMEDIATE_SERV

VI_ATTR_INTF_INST_NAME

VI_ATTR_INTF_NUM

VI_ATTR_INTF_PARENT_NUM

VI_ATTR_INTF_TYPE

VI_ATTR_IO_PROT

VI_ATTR_MAINFRAME_LA

VI_ATTR_MANF_ID

VI_ATTR_MANF_NAME

VI_ATTR_MEM_BASE

VI_ATTR_MEM_SIZE

VI_ATTR_MEM_SPACE

Appendix B Resources

NI-VISA Programmer Reference Manual B-4 ni.com

VI_ATTR_MODEL_CODE

VI_ATTR_MODEL_NAME

VI_ATTR_RD_BUF_OPER_MODE

VI_ATTR_SEND_END_EN

VI_ATTR_SLOT

VI_ATTR_SRC_ACCESS_PRIV

VI_ATTR_SRC_BYTE_ORDER

VI_ATTR_SRC_INCREMENT

VI_ATTR_SUPPRESS_END_EN

VI_ATTR_TCPIP_ADDR

VI_ATTR_TCPIP_DEVICE_NAME

VI_ATTR_TCPIP_HOSTNAME

VI_ATTR_TERMCHAR

VI_ATTR_TERMCHAR_EN

VI_ATTR_TMO_VALUE

VI_ATTR_TRIG_ID

VI_ATTR_VXI_DEV_CLASS

VI_ATTR_VXI_LA

VI_ATTR_VXI_TRIG_SUPPORT

VI_ATTR_WIN_ACCESS

VI_ATTR_WIN_ACCESS_PRIV

VI_ATTR_WIN_BASE_ADDR

VI_ATTR_WIN_BYTE_ORDER

VI_ATTR_WIN_SIZE

VI_ATTR_WR_BUF_OPER_MODE

Events
VI_EVENT_ASRL_BREAK

VI_EVENT_ASRL_CHAR

VI_EVENT_ASRL_CTS

VI_EVENT_ASRL_DCD

VI_EVENT_ASRL_DSR

VI_EVENT_ASRL_RI

VI_EVENT_ASRL_TERMCHAR

VI_EVENT_IO_COMPLETION

VI_EVENT_SERVICE_REQ

VI_EVENT_TRIG

VI_EVENT_VXI_SIGP

VI_EVENT_VXI_VME_INTR

Appendix B Resources

© National Instruments Corporation B-5 NI-VISA Programmer Reference Manual

Operations
viAssertTrigger(vi, protocol)

viBufRead(vi, buf, count, retCount)

viBufWrite(vi, buf, count, retCount)

viClear(vi)

viFlush(vi, mask)

viGpibControlREN(vi, mode)

viIn8(vi, space, offset, val8)

viIn16(vi, space, offset, val16)

viIn32(vi, space, offset, val32)

viMapAddress(vi, mapSpace, mapBase, mapSize, access,

suggested, address)

viMemAlloc(vi, size, offset)

viMemFree(vi, offset)

viMove(vi, srcSpace, srcOffset, srcWidth, destSpace,

destOffset, destWidth, length)

viMoveAsync(vi, srcSpace, srcOffset, srcWidth,

destSpace, destOffset, destWidth,

length, jobId)

viMoveIn8(vi, space, offset, length, buf8)

viMoveIn16(vi, space, offset, length, buf16)

viMoveIn32(vi, space, offset, length, buf32)

viMoveOut8(vi, space, offset, length, buf8)

viMoveOut16(vi, space, offset, length, buf16)

viMoveOut32(vi, space, offset, length, buf32)

viOut8(vi, space, offset, val8)

viOut16(vi, space, offset, val16)

viOut32(vi, space, offset, val32)

viPeek8(vi, addr, val8)

viPeek16(vi, addr, val16)

viPeek32(vi, addr, val32)

viPoke8(vi, addr, val8)

viPoke16(vi, addr, val16)

viPoke32(vi, addr, val32)

viPrintf(vi, writeFmt, ...)

viQueryf(vi, writeFmt, readFmt, ...)

viRead(vi, buf, count, retCount)

viReadAsync(vi, buf, count, jobId)

viReadSTB(vi, status)

viReadToFile(vi, fileName, count, retCount)

viScanf(vi, readFmt, ...)

viSetBuf(vi, mask, size)

viSPrintf(vi, buf, writeFmt, ...)

Appendix B Resources

NI-VISA Programmer Reference Manual B-6 ni.com

viSScanf(vi, buf, readFmt, ...)

viUnmapAddress(vi)

viVPrintf(vi, writeFmt, params)

viVQueryf(vi, writeFmt, readFmt, params)

viVScanf(vi, readFmt, params)

viVSPrintf(vi, buf, writeFmt, params)

viVSScanf(vi, buf, readFmt, params)

viVxiCommandQuery(vi, mode, cmd, response)

viWrite(vi, buf, count, retCount)

viWriteAsync(vi, buf, count, jobId)

viWriteFromFile(vi, fileName, count, retCount)

MEMACC Resource
This section lists the attributes, events, and operations for the MEMACC
Resource. The attributes, events, and operations in the VISA Resource
Template are available to this resource in addition to the attributes and
operations listed below.

Attributes
VI_ATTR_DEST_ACCESS_PRIV

VI_ATTR_DEST_BYTE_ORDER

VI_ATTR_DEST_INCREMENT

VI_ATTR_DMA_ALLOW_EN

VI_ATTR_GPIB_PRIMARY_ADDR

VI_ATTR_GPIB_SECONDARY_ADDR

VI_ATTR_INTF_INST_NAME

VI_ATTR_INTF_NUM

VI_ATTR_INTF_PARENT_NUM

VI_ATTR_INTF_TYPE

VI_ATTR_SRC_ACCESS_PRIV

VI_ATTR_SRC_BYTE_ORDER

VI_ATTR_SRC_INCREMENT

VI_ATTR_TMO_VALUE

VI_ATTR_VXI_LA

VI_ATTR_WIN_ACCESS

VI_ATTR_WIN_ACCESS_PRIV

VI_ATTR_WIN_BASE_ADDR

VI_ATTR_WIN_BYTE_ORDER

VI_ATTR_WIN_SIZE

Events
VI_EVENT_IO_COMPLETION

Appendix B Resources

© National Instruments Corporation B-7 NI-VISA Programmer Reference Manual

Operations
viIn8(vi, space, offset, val8)

viIn16(vi, space, offset, val16)

viIn32(vi, space, offset, val32)

viMapAddress(vi, mapSpace, mapBase, mapSize, access,

suggested, address)

viMove(vi, srcSpace, srcOffset, srcWidth, destSpace,

destOffset, destWidth, length)

viMoveAsync(vi, srcSpace, srcOffset, srcWidth,

destSpace, destOffset, destWidth,

length, jobId)

viMoveIn8(vi, space, offset, length, buf8)

viMoveIn16(vi, space, offset, length, buf16)

viMoveIn32(vi, space, offset, length, buf32)

viMoveOut8(vi, space, offset, length, buf8)

viMoveOut16(vi, space, offset, length, buf16)

viMoveOut32(vi, space, offset, length, buf32)

viOut8(vi, space, offset, val8)

viOut16(vi, space, offset, val16)

viOut32(vi, space, offset, val32)

viPeek8(vi, addr, val8)

viPeek16(vi, addr, val16)

viPeek32(vi, addr, val32)

viPoke8(vi, addr, val8)

viPoke16(vi, addr, val16)

viPoke32(vi, addr, val32)

viUnmapAddress(vi)

INTFC Resource
This section lists the attributes, events, and operations for the INTFC
Resource. The attributes, events, and operations in the VISA Resource
Template are available to this resource in addition to the attributes and
operations listed below.

Attributes
VI_ATTR_DEV_STATUS_BYTE

VI_ATTR_DMA_ALLOW_EN

VI_ATTR_FILE_APPEND_EN

VI_ATTR_GPIB_ATN_STATE

VI_ATTR_GPIB_CIC_STATE

VI_ATTR_GPIB_HS488_CBL_LEN

VI_ATTR_GPIB_NDAC_STATE

Appendix B Resources

NI-VISA Programmer Reference Manual B-8 ni.com

VI_ATTR_GPIB_PRIMARY_ADDR

VI_ATTR_GPIB_REN_STATE

VI_ATTR_GPIB_SECONDARY_ADDR

VI_ATTR_GPIB_SRQ_STATE

VI_ATTR_GPIB_SYS_CNTRL_STATE

VI_ATTR_INTF_INST_NAME

VI_ATTR_INTF_NUM

VI_ATTR_INTF_TYPE

VI_ATTR_RD_BUF_OPER_MODE

VI_ATTR_SEND_END_EN

VI_ATTR_TERMCHAR

VI_ATTR_TERMCHAR_EN

VI_ATTR_TMO_VALUE

VI_ATTR_TRIG_ID

VI_ATTR_WR_BUF_OPER_MODE

Events
VI_EVENT_CLEAR

VI_EVENT_GPIB_CIC

VI_EVENT_GPIB_LISTEN

VI_EVENT_GPIB_TALK

VI_EVENT_IO_COMPLETION

VI_EVENT_SERVICE_REQ

VI_EVENT_TRIG

Operations
viAssertTrigger(vi, protocol)

viBufRead(vi, buf, count, retCount)

viBufWrite(vi, buf, count, retCount)

viFlush(vi, mask)

viGpibCommand(vi, buf, count, retCount)

viGpibControlATN(vi, mode)

viGpibControlREN(vi, mode)

viGpibPassControl(vi, primAddr, secAddr)

viGpibSendIFC(vi)

viPrintf(vi, writeFmt, ...)

viRead(vi, buf, count, retCount)

viReadAsync(vi, buf, count, jobId)

viReadToFile(vi, fileName, count, retCount)

viScanf(vi, readFmt, ...)

viSetBuf(vi, mask, size)

viSPrintf(vi, buf, writeFmt, ...)

Appendix B Resources

© National Instruments Corporation B-9 NI-VISA Programmer Reference Manual

viSScanf(vi, buf, readFmt, ...)

viVPrintf(vi, writeFmt, params)

viVScanf(vi, readFmt, params)

viVSPrintf(vi, buf, writeFmt, params)

viVSScanf(vi, buf, readFmt, params)

viWrite(vi, buf, count, retCount)

viWriteAsync(vi, buf, count, jobId)

viWriteFromFile(vi, fileName, count, retCount)

BACKPLANE Resource
This section lists the attributes, events, and operations for the
BACKPLANE Resource. The attributes, events, and operations in the
VISA Resource Template are available to this resource in addition to
the attributes and operations listed below.

Attributes
VI_ATTR_GPIB_PRIMARY_ADDR

VI_ATTR_GPIB_SECONDARY_ADDR

VI_ATTR_INTF_INST_NAME

VI_ATTR_INTF_NUM

VI_ATTR_INTF_PARENT_NUM

VI_ATTR_INTF_TYPE

VI_ATTR_MAINFRAME_LA

VI_ATTR_TMO_VALUE

VI_ATTR_TRIG_ID

VI_ATTR_VXI_TRIG_STATUS

VI_ATTR_VXI_TRIG_SUPPORT

VI_ATTR_VXI_VME_INTR_STATUS

VI_ATTR_VXI_VME_SYSFAIL_STATE

Events
VI_EVENT_TRIG

VI_EVENT_VXI_VME_SYSFAIL

VI_EVENT_VXI_VME_SYSRESET

Operations
viAssertIntrSignal(vi, mode, statusID)

viAssertTrigger(vi, protocol)

viAssertUtilSignal(vi, line)

viMapTrigger(vi, trigSrc, trigDest, mode)

viUnmapTrigger(vi, trigSrc, trigDest)

Appendix B Resources

NI-VISA Programmer Reference Manual B-10 ni.com

SERVANT Resource
This section lists the attributes, events, and operations for the SERVANT
Resource. The attributes, events, and operations in the VISA Resource
Template are available to this resource in addition to the attributes and
operations listed below.

Attributes
VI_ATTR_CMDR_LA

VI_ATTR_DEV_STATUS_BYTE

VI_ATTR_DMA_ALLOW_EN

VI_ATTR_FILE_APPEND_EN

VI_ATTR_GPIB_PRIMARY_ADDR

VI_ATTR_GPIB_REN_STATE

VI_ATTR_GPIB_SECONDARY_ADDR

VI_ATTR_INTF_INST_NAME

VI_ATTR_INTF_NUM

VI_ATTR_INTF_TYPE

VI_ATTR_IO_PROT

VI_ATTR_RD_BUF_OPER_MODE

VI_ATTR_SEND_END_EN

VI_ATTR_TERMCHAR

VI_ATTR_TERMCHAR_EN

VI_ATTR_TMO_VALUE

VI_ATTR_TRIG_ID

VI_ATTR_VXI_LA

VI_ATTR_VXI_VME_SYSFAIL_STATE

VI_ATTR_WR_BUF_OPER_MODE

Events
VI_EVENT_CLEAR

VI_EVENT_GPIB_LISTEN

VI_EVENT_GPIB_TALK

VI_EVENT_IO_COMPLETION

VI_EVENT_TRIG

VI_EVENT_VXI_VME_SYSRESET

Operations
viAssertIntrSignal(vi, mode, statusID)

viAssertUtilSignal(vi, line)

viBufRead(vi, buf, count, retCount)

viBufWrite(vi, buf, count, retCount)

Appendix B Resources

© National Instruments Corporation B-11 NI-VISA Programmer Reference Manual

viFlush(vi, mask)

viPrintf(vi, writeFmt, ...)

viRead(vi, buf, count, retCount)

viReadAsync(vi, buf, count, jobId)

viReadToFile(vi, fileName, count, retCount)

viScanf(vi, readFmt, ...)

viSetBuf(vi, mask, size)

viSPrintf(vi, buf, writeFmt, ...)

viSScanf(vi, buf, readFmt, ...)

viVPrintf(vi, writeFmt, params)

viVScanf(vi, readFmt, params)

viVSPrintf(vi, buf, writeFmt, params)

viVSScanf(vi, buf, readFmt, params)

viWrite(vi, buf, count, retCount)

viWriteAsync(vi, buf, count, jobId)

viWriteFromFile(vi, fileName, count, retCount)

SOCKET Resource
This section lists the attributes, events, and operations for the SOCKET
Resource. The attributes, events, and operations in the VISA Resource
Template are available to this resource in addition to the attributes and
operations listed below.

Attributes
VI_ATTR_FILE_APPEND_EN

VI_ATTR_INTF_INST_NAME

VI_ATTR_INTF_NUM

VI_ATTR_INTF_TYPE

VI_ATTR_IO_PROT

VI_ATTR_RD_BUF_OPER_MODE

VI_ATTR_SEND_END_EN

VI_ATTR_TCPIP_ADDR

VI_ATTR_TCPIP_HOSTNAME

VI_ATTR_TCPIP_KEEPALIVE

VI_ATTR_TCPIP_NODELAY

VI_ATTR_TCPIP_PORT

VI_ATTR_TERMCHAR

VI_ATTR_TERMCHAR_EN

VI_ATTR_TMO_VALUE

VI_ATTR_TRIG_ID

VI_ATTR_WR_BUF_OPER_MODE

Appendix B Resources

NI-VISA Programmer Reference Manual B-12 ni.com

Events
VI_EVENT_IO_COMPLETION

Operations
viAssertTrigger(vi, protocol)

viBufRead(vi, buf, count, retCount)

viBufWrite(vi, buf, count, retCount)

viClear(vi)

viFlush(vi, mask)

viPrintf(vi, writeFmt, ...)

viQueryf(vi, writeFmt, readFmt, ...)

viRead(vi, buf, count, retCount)

viReadAsync(vi, buf, count, jobId)

viReadSTB(vi, status)

viReadToFile(vi, fileName, count, retCount)

viScanf(vi, readFmt, ...)

viSetBuf(vi, mask, size)

viSPrintf(vi, buf, writeFmt, ...)

viSScanf(vi, buf, readFmt, ...)

viVPrintf(vi, writeFmt, params)

viVQueryf(vi, writeFmt, readFmt, params)

viVScanf(vi, readFmt, params)

viVSPrintf(vi, buf, writeFmt, params)

viVSScanf(vi, buf, readFmt, params)

viWrite(vi, buf, count, retCount)

viWriteAsync(vi, buf, count, jobId)

viWriteFromFile(vi, fileName, count, retCount)

© National Instruments Corporation C-1 NI-VISA Programmer Reference Manual

C
Technical Support Resources

Web Support
National Instruments Web support is your first stop for help in solving
installation, configuration, and application problems and questions. Online
problem-solving and diagnostic resources include frequently asked
questions, knowledge bases, product-specific troubleshooting wizards,
manuals, drivers, software updates, and more. Web support is available
through the Technical Support section of ni.com.

NI Developer Zone
The NI Developer Zone at ni.com/zone is the essential resource for
building measurement and automation systems. At the NI Developer Zone,
you can easily access the latest example programs, system configurators,
tutorials, technical news, as well as a community of developers ready to
share their own techniques.

Customer Education
National Instruments provides a number of alternatives to satisfy your
training needs, from self-paced tutorials, videos, and interactive CDs to
instructor-led hands-on courses at locations around the world. Visit the
Customer Education section of ni.com for online course schedules,
syllabi, training centers, and class registration.

System Integration
If you have time constraints, limited in-house technical resources, or other
dilemmas, you may prefer to employ consulting or system integration
services. You can rely on the expertise available through our worldwide
network of Alliance Program members. To find out more about our
Alliance system integration solutions, visit the System Integration section
of ni.com.

Appendix C Technical Support Resources

NI-VISA Programmer Reference Manual C-2 ni.com

Worldwide Support
National Instruments has offices located around the world to help address
your support needs. You can access our branch office Web sites from the
Worldwide Offices section of ni.com. Branch office Web sites provide
up-to-date contact information, support phone numbers, e-mail addresses,
and current events.

If you have searched the technical support resources on our Web site and
still cannot find the answers you need, contact your local office or National
Instruments corporate. Phone numbers for our worldwide offices are listed
at the front of this manual.

© National Instruments Corporation G-1 NI-VISA Programmer Reference Manual

Glossary

Prefix Meanings Value

p- pico 10–12

n- nano- 10–9

µ- micro- 10– 6

m- milli- 10–3

k- kilo- 103

M- mega- 106

G- giga- 109

t- tera- 1012

A

address A string (or other language construct) that uniquely locates and identifies
a resource. VISA defines an ASCII-based grammar that associates strings
with particular physical devices and VISA resources.

address location Refers to the location of a specific register.

address modifier One of six signals in the VMEbus specifications used by VMEbus masters
to indicate the address space and mode (supervisory/nonprivileged,
data/program/block) in which a data transfer is to take place.

address space In VXI/VME systems, a set of 2n memory locations differentiated from
other such sets in VXI/VMEbus systems by six signal lines known as
address modifiers, where n (either 16, 24, or 32) is the number of address
lines required to uniquely specify a byte location in a given space. In PXI
systems, the address space corresponds to 1 of 6 possible BAR locations
(BAR0 through BAR5). In VME, VXI, and PXI, a given device may have
addresses in one or more address spaces.

address string A string (or other language construct) that uniquely locates and identifies a
resource. VISA defines an ASCII-based grammar that associates strings
with particular physical devices and VISA resources.

Glossary

NI-VISA Programmer Reference Manual G-2 ni.com

alias User-defined name for a VISA resource.

ANSI American National Standards Institute.

API Application Programming Interface. The direct interface that an end user
sees when creating an application. In VISA, the API consists of the sum of
all of the operations, attributes, and events of each of the VISA Resource
Classes.

ASCII American Standard Code for Information Interchange.

asynchronous An action or event that occurs at an unpredictable time with respect to the
execution of a program.

attribute A value within an object or resource that reflects a characteristic of its
operational state.

B

b Bit

B Byte

backplane In VXI/VME systems, an assembly, typically a PCB, with 96-pin
connectors and signal paths that bus the connector pins. A C-size VXIbus
system will have two sets of bused connectors called the J1 and J2
backplanes. A D-size VXIbus system will have three sets of bused
connectors called the J1, J2, and J3 backplane.

Base Address Register Each PCI or PXI device has six of these, BAR0 through BAR5. At
power-on, each BAR requests a given size of memory or I/O space. Each
device can request from 0 to 6 regions of PCI memory or I/O space. After
the operating system starts, each BAR contains an assigned base address in
PCI address space. A value of 0 in a given BAR indicates that the device is
not using that BAR.

bus error An error that signals failed access to an address. Bus errors occur with
low-level accesses to memory and usually involve hardware with bus
mapping capabilities. For example, nonexistent memory, a nonexistent
register, or an incorrect device access can cause a bus error.

Glossary

© National Instruments Corporation G-3 NI-VISA Programmer Reference Manual

byte order How bytes are arranged within a word or how words are arranged within a
longword. Motorola (Big-Endian) ordering stores the most significant byte
(MSB) or word first, followed by the least significant byte (LSB) or word.
Intel (Little-Endian) ordering stores the LSB or word first, followed by the
MSB or word.

C

callback A software routine that is invoked when an asynchronous event occurs. In
VISA, callbacks can be installed on any session that processes events.
Same as handler.

CIC Controller-In-Charge. The device that manages the GPIB by sending
interface messages to other devices.

commander A device that has the ability to control another device. This term can also
denote the unique device that has sole control over another device (as with
the VXI Commander/Servant hierarchy).

communication channel A communication path between a software element and a resource. Every
communication channel in VISA is unique. Same as session.

configuration
registers

A set of registers through which the system can identify a module device
type, model, manufacturer, address space, and memory requirements. In
order to support automatic system and memory configuration, the PXI and
VXIbus specifications require that all PXI and VXIbus devices have a set
of such registers.

controller An entity that can control another device(s) or is in the process of
performing an operation on another device.

CPU Central processing unit.

D

device An entity that receives commands from a controller. A device can be an
instrument, a computer (acting in a non-controller role), or a peripheral
(such as a plotter or printer).

DLL Dynamic Link Library. A file containing a collection of functions that can
be used by multiple applications. This term is usually used for libraries on
Windows platforms. Same as a shared library or shared object.

Glossary

NI-VISA Programmer Reference Manual G-4 ni.com

DMA Direct memory access. High-speed data transfer between a board and
memory that is not handled directly by the CPU. Not available on some
systems. See programmed I/O.

E

embedded controller A computer plugged directly into the VXI backplane. An example is the
National Instruments VXIpc-850.

event An asynchronous occurrence that is independent of the normal sequential
execution of the process running in a system.

external controller A desktop computer or workstation connected to the VXI system via an
MXI interface board. An example is a standard personal computer with
a PCI-MXI-2 installed.

F

FIFO First In-First Out. A method of data storage in which the first element
stored is the first one retrieved.

G

GPIB General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE Standard
488.1-1987 and ANSI/IEEE Standard 488.2-1992.

H

handler A software routine that is invoked when an asynchronous event occurs. In
VISA, callbacks can be installed on any session that processes events.
Same as callback.

handshaking A type of protocol that makes it possible for two devices to synchronize
operations.

I

I/O Input/output.

Glossary

© National Instruments Corporation G-5 NI-VISA Programmer Reference Manual

IEEE Institute of Electrical and Electronics Engineers.

instrument A device that accepts some form of stimulus to perform a designated task,
test, or measurement function. Two common forms of stimuli are message
passing and register reads and writes. Other forms include triggering or
varying forms of asynchronous control.

instrument driver A set of routines designed to control a specific instrument or family of
instruments, and any necessary related files for LabWindows/CVI or
LabVIEW.

interface A generic term that applies to the connection between devices and
controllers. It includes the communication media and the device/controller
hardware necessary for cross-communication.

interrupt A condition that requires attention out of the normal flow of control of a
program.

L

lock A state that prohibits sessions other than the session(s) owning the lock
from accessing a resource.

logical address An 8-bit number that uniquely identifies the location of each VXIbus
device's configuration registers in a system. The A16 register address of
a device is C000h + Logical Address * 40h.

M

mapping An operation that returns a reference to a specified section of an address
space and makes the specified range of addresses accessible to the
requester. This function is independent of memory allocation.

MAX Measurement & Automation Explorer. Provides access to all National
Instruments DAQ, GPIB, IMAQ, IVI, Motion, VISA, and VXI devices.
With MAX, you can configure National Instruments hardware and
software, add new channels, interfaces, and virtual instruments, execute
system diagnostics, and view the devices and instruments connected to
your system. Installs automatically with NI-VISA version 2.5 or higher or
NI-VXI version 3.0 or higher. Available only for Win32-based operating
systems.

Glossary

NI-VISA Programmer Reference Manual G-6 ni.com

message-based device In VXI/VME systems, an intelligent device that implements the defined
VXIbus registers and communication protocols. These devices are able to
use Word Serial Protocol to communicate with one another through
communication registers. All GPIB and Serial devices are by definition
message-based, as are devices for some other interfaces. Many modern
message-based devices support the IEEE 488.2 protocol.

multitasking The ability of a computer to perform two or more functions simultaneously
without interference from one another. In operating system terms, it is the
ability of the operating system to execute multiple applications/processes
by time-sharing the available CPU resources.

N

NI Spy A utility that monitors, records, and displays multiple National Instruments
APIs, such as NI-488.2 and NI-VISA. Useful for troubleshooting errors in
your application and for verifying communication.

O

operation An action defined by a resource that can be performed on a resource. In
general, this term is synonymous with the connotation of the word method
in object-oriented architectures.

P

process An operating system element that shares a system's resources. A
multi-process system is a computer system that allows multiple programs
to execute simultaneously, each in a separate process environment. A
single-process system is a computer system that allows only a single
program to execute at a given point in time.

programmed I/O Low-speed data transfer between a board and memory in which the CPU
moves each data value according to program instructions. See DMA.

protocol Set of rules or conventions governing the exchange of information between
computer systems.

Glossary

© National Instruments Corporation G-7 NI-VISA Programmer Reference Manual

PXI PCI eXtensions for Instrumentation. PXI leverages the electrical features
defined by the Peripheral Component Interconnect (PCI) specification as
well as the CompactPCI form factor, which combines the PCI electrical
specification with Eurocard (VME) mechanical packaging and
high-performance connectors. This combination allows CompactPCI and
PXI systems to have up to seven peripheral slots versus four in a desktop
PCI system.

R

register An address location that can be read from or written into or both. It may
contain a value that is a function of the state of hardware or can be written
into to cause hardware to perform a particular action. In other words, an
address location that controls and/or monitors hardware.

register-based device In VXI/VME systems, a servant-only device that supports only the four
basic VXIbus configuration registers. Register-based devices are typically
controlled by message-based devices via device-dependent register reads
and writes. All PXI devices are by definition register-based, as are devices
for some other interfaces.

Resource Class The definition for how to create a particular resource. In general, this is
synonymous with the connotation of the word class in object-oriented
architectures. For VISA Instrument Control resource classes, this refers to
the definition for how to create a resource which controls a particular
capability or set of capabilities of a device.

resource or resource
instance

In general, this term is synonymous with the connotation of the word object
in object-oriented architectures. For VISA, resource more specifically
refers to a particular implementation (or instance in object-oriented terms)
of a Resource Class.

S

s Second.

servant A device controlled by a Commander.

session A communication path between a software element and a resource. Every
communication channel in VISA is unique. Same as communication
channel.

Glossary

NI-VISA Programmer Reference Manual G-8 ni.com

shared library or
shared object

A file containing a collection of functions that can be used by multiple
applications. This term is usually used for libraries on UNIX platforms.
Same as DLL.

shared memory A block of memory that is accessible to both a client and a server. The
memory block operates as a buffer for communication. This is unique to
register-based interfaces such as VXI.

socket A bi-directional communication endpoint. An object through which a
VISA sockets application sends or receives packets of data across a
network.

SRQ IEEE 488 Service Request. This is an asynchronous request from a remote
device that requires service. A service request is essentially an interrupt
from a remote device. For GPIB, this amounts to asserting the SRQ line on
the GPIB. For VXI, this amounts to sending the Request for Service True
event (REQT).

status byte A byte of information returned from a remote device that shows the current
state and status of the device. If the device follows IEEE 488 conventions,
bit 6 of the status byte indicates whether the device is currently requesting
service.

status/ID A value returned during an IACK cycle. In VME, usually an 8-bit value
which is either a status/data value or a vector/ID value used by the
processor to determine the source. In VXI, a 16-bit value used as a data; the
lower 8 bits form the VXI logical address of the interrupting device and the
upper 8 bits specify the reason for interrupting.

T

TCP/IP Transmission Control Protocol/Internet Protocol. The de facto standard
for transmitting data over networks, TCP/IP is a multi-layered suite of
communication protocols used to connect hosts on LANs, WANs and the
Internet. It is very widely supported, even by network operating systems
that have their own communication protocols.

thread An operating system element that consists of a flow of control within a
process. In some operating systems, a single process can have multiple
threads, each of which can access the same data space within the process.
However, each thread has its own stack and all threads can execute
concurrently with one another (either on multiple processors, or by
time-sharing a single processor).

Glossary

© National Instruments Corporation G-9 NI-VISA Programmer Reference Manual

V

virtual instrument A name given to the grouping of software modules (in this case, VISA
resources with any associated or required hardware) to give the
functionality of a traditional stand-alone instrument. Within VISA, a virtual
instrument is the logical grouping of any of the VISA resources.

VISA Virtual Instrument Software Architecture. This is the general name given to
this product and its associated architecture. The architecture consists of two
main VISA components: the VISA resource manager and the VISA
resources.

VISA Instrument
Control Resources

This is the name given to the part of VISA that defines all of the
device-specific resource classes. VISA Instrument Control resources
encompass all defined device capabilities for direct, low-level instrument
control.

VISA memory
access resources

This is the name given to the part of VISA that defines all of the register-
or memory-specific resource classes. The VISA MEMACC resources
encompass all high- and low-level services for interface-level accesses to
all memory defined in the system.

VISA Resource Manager This is the name given to the part of VISA that manages resources. This
management includes support for finding resources and opening sessions
to them.

VISA Resource
Template

This is the name given to the part of VISA that defines the basic constraints
and interface definition for the creation and use of a VISA resource. All
VISA resources must derive their interface from the definition of the VISA
Resource Template. This includes services for setting and retrieving
attributes, receiving events, locking resources, and closing objects.

visaconf VISA configuration utility for Solaris and Linux.

VISAIC VISA Interacvtive Control utility. Interactively controls VXI/VME devices
without using a conventional programming language, LabVIEW, or
Measurement Studio.

VME Versa Module Eurocard or IEEE 1014.

VXIbus VMEbus Extensions for Instrumentation or IEEE 1155.

© National Instruments Corporation I-1 NI-VISA Programmer Reference Manual

Index

Numerics
8-bit, 16-bit, and 32-bit operations

viIn8 / viIn16 / viIn32 operations, 5-50
viMoveIn8 / viMoveIn16 / viMoveIn32

operations, 5-74
viMoveOut8 / viMoveOut16 /

viMoveOut32 operations, 5-77
viOut8 / viOut16 / viOut32 operations, 5-87
viPeek8 / viPeek16 / viPeek32

operations, 5-92
viPoke8 / viPoke16 / viPoke32

operations, 5-94

A
access mechanism for VISA API

attributes, 2-1
events, 2-1
operations, 2-2

address modifiers
VI_ATTR_DEST_ACCESS_PRIV, 3-27
VI_ATTR_SRC_ACCESS_PRIV, 3-92

ANSI C format codes
viPrintf, 5-96
viScanf, 5-118

API
description of, 2-6

asynchronous transfers
VI_ATTR_JOB_ID, 3-57
VI_ATTR_RET_COUNT, 3-79
VI_ATTR_STATUS, 3-95
VI_EVENT_IO_COMPLETION, 4-15
viMoveAsync, 5-71
viReadAsync, 5-111
viWriteAsync, 5-167

attributes
access mechanism for VISA, 2-1

BACKPLANE Resource, B-9
definition, 2-1
INSTR Resource, B-2
INTFC Resource, B-7
MEMACC Resource, B-6
overview, 2-1
SERVANT Resource, B-10
SOCKET Resource, B-11
VI_ATTR_ASRL_ALLOW_TRANSMIT,

3-2
VI_ATTR_ASRL_AVAIL_NUM, 3-3
VI_ATTR_ASRL_BAUD, 3-4
VI_ATTR_ASRL_BREAK_LEN, 3-5
VI_ATTR_ASRL_BREAK_STATE, 3-6
VI_ATTR_ASRL_CTS_STATE, 3-7
VI_ATTR_ASRL_DATA_BITS, 3-8
VI_ATTR_ASRL_DCD_STATE, 3-9
VI_ATTR_ASRL_DISCARD_NULL, 3-10
VI_ATTR_ASRL_DSR_STATE, 3-11
VI_ATTR_ASRL_DTR_STATE, 3-12
VI_ATTR_ASRL_END_IN, 3-13
VI_ATTR_ASRL_END_OUT, 3-14
VI_ATTR_ASRL_FLOW_CNTRL, 3-15
VI_ATTR_ASRL_PARITY, 3-17
VI_ATTR_ASRL_REPLACE_CHAR,

3-18
VI_ATTR_ASRL_RI_STATE, 3-19
VI_ATTR_ASRL_RTS_STATE, 3-20
VI_ATTR_ASRL_STOP_BITS, 3-21
VI_ATTR_ASRL_WIRE_MODE, 3-22
VI_ATTR_ASRL_XOFF_CHAR, 3-23
VI_ATTR_ASRL_XON_CHAR, 3-24
VI_ATTR_BUFFER, 3-25
VI_ATTR_CMDR_LA, 3-26
VI_ATTR_DEST_ACCESS_PRIV, 3-27
VI_ATTR_DEST_BYTE_ORDER, 3-28
VI_ATTR_DEST_INCREMENT, 3-29

Index

NI-VISA Programmer Reference Manual I-2 ni.com

VI_ATTR_DEV_STATUS_BYTE, 3-30
VI_ATTR_DMA_ALLOW_EN, 3-31
VI_ATTR_EVENT_TYPE, 3-32
VI_ATTR_FDC_CHNL, 3-33
VI_ATTR_FDC_MODE, 3-34
VI_ATTR_FDC_USE_PAIR, 3-35
VI_ATTR_FILE_APPEND_EN, 3-36
VI_ATTR_GPIB_ADDR_STATE, 3-37
VI_ATTR_GPIB_ATN_STATE, 3-38
VI_ATTR_GPIB_CIC_STATE, 3-39
VI_ATTR_GPIB_HS488_CBL_LEN,

3-40
VI_ATTR_GPIB_NDAC_STATE, 3-41
VI_ATTR_GPIB_PRIMARY_ADDR,

3-42
VI_ATTR_GPIB_READDR_EN, 3-43
VI_ATTR_GPIB_RECV_CIC_STATE,

3-44
VI_ATTR_GPIB_REN_STATE, 3-45
VI_ATTR_GPIB_SECONDARY_

ADDR, 3-46
VI_ATTR_GPIB_SRQ_STATE, 3-47
VI_ATTR_GPIB_SYS_CNTRL_

STATE, 3-48
VI_ATTR_GPIB_UNADDR_EN, 3-49
VI_ATTR_IMMEDIATE_SERV, 3-50
VI_ATTR_INTF_INST_NAME, 3-51
VI_ATTR_INTF_NUM, 3-52
VI_ATTR_INTF_PARENT_NUM, 3-53
VI_ATTR_INTF_TYPE, 3-54
VI_ATTR_INTR_STATUS_ID, 3-55
VI_ATTR_IO_PROT, 3-56
VI_ATTR_JOB_ID, 3-57
VI_ATTR_MAINFRAME_LA, 3-58
VI_ATTR_MANF_ID, 3-59
VI_ATTR_MANF_NAME, 3-60
VI_ATTR_MAX_QUEUE_LENGTH,

3-61
VI_ATTR_MEM_BASE, 3-62
VI_ATTR_MEM_SIZE, 3-63
VI_ATTR_MEM_SPACE, 3-64

VI_ATTR_MODEL_CODE, 3-65
VI_ATTR_MODEL_NAME, 3-66
VI_ATTR_OPER_NAME, 3-67
VI_ATTR_PXI_DEV_NUM, 3-68
VI_ATTR_PXI_FUNC_NUM, 3-69
VI_ATTR_PXI_MEM_BASE_BARx,

3-70
VI_ATTR_PXI_MEM_SIZE_BARx,

3-71
VI_ATTR_PXI_MEM_TYPE_BARx,

3-72
VI_ATTR_PXI_SUB_MANF_ID, 3-73
VI_ATTR_PXI_SUB_MODEL_CODE,

3-74
VI_ATTR_RD_BUF_OPER_MODE,

3-75
VI_ATTR_RD_BUF_SIZE, 3-76
VI_ATTR_RECV_INTR_LEVEL, 3-77
VI_ATTR_RECV_TRIG_ID, 3-78
VI_ATTR_RET_COUNT, 3-79
VI_ATTR_RM_SESSION, 3-80
VI_ATTR_RSRC_CLASS, 3-81
VI_ATTR_RSRC_IMPL_VERSION,

3-82
VI_ATTR_RSRC_LOCK_STATE, 3-83
VI_ATTR_RSRC_MANF_ID, 3-84
VI_ATTR_RSRC_MANF_NAME, 3-85
VI_ATTR_RSRC_NAME, 3-86
VI_ATTR_RSRC_SPEC_VERSION,

3-88
VI_ATTR_SEND_END_EN, 3-89
VI_ATTR_SIGP_STATUS_ID, 3-90
VI_ATTR_SLOT, 3-91
VI_ATTR_SRC_ACCESS_PRIV, 3-92
VI_ATTR_SRC_BYTE_ORDER, 3-93
VI_ATTR_SRC_INCREMENT, 3-94
VI_ATTR_STATUS, 3-95
VI_ATTR_SUPPRESS_END_EN, 3-96
VI_ATTR_TCPIP_ADDR, 3-97
VI_ATTR_TCPIP_DEVICE_NAME,

3-98

Index

© National Instruments Corporation I-3 NI-VISA Programmer Reference Manual

VI_ATTR_TCPIP_HOSTNAME, 3-99
VI_ATTR_TCPIP_KEEPALIVE, 3-100
VI_ATTR_TCPIP_NODELAY, 3-101
VI_ATTR_TCPIP_PORT, 3-102
VI_ATTR_TERMCHAR, 3-103
VI_ATTR_TERMCHAR_EN, 3-104
VI_ATTR_TMO_VALUE, 3-105
VI_ATTR_TRIG_ID, 3-106
VI_ATTR_USER_DATA, 3-107
VI_ATTR_VXI_DEV_CLASS, 3-108
VI_ATTR_VXI_LA, 3-109
VI_ATTR_VXI_TRIG_STATUS, 3-110
VI_ATTR_VXI_TRIG_SUPPORT,

3-111
VI_ATTR_VXI_VME_INTR_STATUS,

3-112
VI_ATTR_VXI_VME_SYSFAIL_

STATE, 3-113
VI_ATTR_WIN_ACCESS, 3-114
VI_ATTR_WIN_ACCESS_PRIV, 3-115
VI_ATTR_WIN_BASE_ADDR, 3-116
VI_ATTR_WIN_BYTE_ORDER, 3-117
VI_ATTR_WIN_SIZE, 3-118
VI_ATTR_WR_BUF_OPER_MODE,

3-119
VI_ATTR_WR_BUF_SIZE, 3-120
VISA Resource Manager, B-2
VISA Resource Template, B-1

B
BACKPLANE Resource

attributes, B-9
VI_ATTR_GPIB_PRIMARY_

ADDR, 3-42
VI_ATTR_GPIB_SECONDARY_

ADDR, 3-46
VI_ATTR_INTF_INST_NAME,

3-51
VI_ATTR_INTF_NUM, 3-52

VI_ATTR_INTF_PARENT_NUM,
3-53

VI_ATTR_INTF_TYPE, 3-54
VI_ATTR_MAINFRAME_LA,

3-58
VI_ATTR_TMO_VALUE, 3-105
VI_ATTR_TRIG_ID, 3-106
VI_ATTR_VXI_TRIG_STATUS,

3-110
VI_ATTR_VXI_TRIG_SUPPORT,

3-111
VI_ATTR_VXI_VME_INTR_

STATUS, 3-112
VI_ATTR_VXI_VME_SYSFAIL_

STATE, 3-113
events, B-9

VI_EVENT_TRIG, 4-18
VI_EVENT_VXI_VME_SYSFAIL,

4-21
VI_EVENT_VXI_VME_

SYSRESET, 4-22
operations, B-9

viAssertIntrSignal, 5-2
viAssertTrigger, 5-4
viAssertUtilSignal, 5-7
viMapTrigger, 5-61
viUnmapTrigger, 5-146

purpose and use, 2-4
BACKPLANE Resource type

description, 2-4
base address

VI_ATTR_MEM_BASE, 3-62
VI_ATTR_WIN_BASE_ADDR, 3-116

basic I/O services
INSTR Resource, 2-2
INTFC Resource, 2-4
SERVANT Resource, 2-5
SOCKET Resource, 2-5

basic I/O services, INSTR Resource, 2-2
baud rate, 3-4
buffer operations

Index

NI-VISA Programmer Reference Manual I-4 ni.com

viBufRead, 5-9
viBufWrite, 5-12
viFlush, 5-34
viSetBuf, 5-130

byte order
VI_ATTR_DEST_BYTE_ORDER, 3-28
VI_ATTR_SRC_BYTE_ORDER, 3-93
VI_ATTR_WIN_BYTE_ORDER, 3-117

C
clearing devices with viClear operation, 5-15
closing sessions with viClose operation, 5-17
completion codes (table), A-1
conventions, xiii
customer education, C-1

D
data bits, 3-8
description of the API, 2-6
destination attributes

VI_ATTR_DEST_ACCESS_PRIV, 3-27
VI_ATTR_DEST_BYTE_ORDER, 3-28
VI_ATTR_DEST_INCREMENT, 3-29

disabling events with viDisableEvent
operation, 5-19

discarding events with viDiscardEvents
operation, 5-21

E
enabling events with viEnableEvent

operation, 5-23
END bit

VI_ATTR_SEND_END_EN, 3-89
VI_ATTR_SUPPRESS_END_EN, 3-96

error codes (table), A-2
event operations

viDiscardEvents, 5-20
viEnableEvent, 5-22

viEventHandler, 5-25
viWaitOnEvent, 5-162

events
access mechanism for VISA, 2-1
BACKPLANE Resource, B-9
definition, 2-1
INSTR Resource, B-4
INTFC Resource, B-8
MEMACC Resource, B-6
overview, 2-1
SERVANT Resource, B-10
SOCKET Resource, B-12
VI_EVENT_ASRL_BREAK, 4-2
VI_EVENT_ASRL_CHAR, 4-3
VI_EVENT_ASRL_CTS, 4-4
VI_EVENT_ASRL_DCD, 4-5
VI_EVENT_ASRL_DSR, 4-6
VI_EVENT_ASRL_RI, 4-7
VI_EVENT_ASRL_TERMCHAR, 4-8
VI_EVENT_CLEAR, 4-9
VI_EVENT_EXCEPTION, 4-10
VI_EVENT_GPIB_CIC, 4-12
VI_EVENT_GPIB_LISTEN, 4-13
VI_EVENT_GPIB_TALK, 4-14
VI_EVENT_IO_COMPLETION, 4-15
VI_EVENT_PXI_INTR, 4-16
VI_EVENT_SERVICE_REQ, 4-17
VI_EVENT_TRIG, 4-18
VI_EVENT_VXI_SIGP, 4-19
VI_EVENT_VXI_VME_INTR, 4-20
VI_EVENT_VXI_VME_SYSFAIL, 4-21
VI_EVENT_VXI_VME_SYSRESET,

4-22
VISA Resource Template, B-1

exception handling with
VI_EVENT_EXCEPTION, 4-10

Index

© National Instruments Corporation I-5 NI-VISA Programmer Reference Manual

F
Fast Data Channel (FDC) attributes

VI_ATTR_FDC_CHNL, 3-33
VI_ATTR_FDC_MODE, 3-34
VI_ATTR_FDC_USE_PAIR, 3-35

finding resource information
viFindNext, 5-27
viFindRsrc, 5-29

format operations
viPrintf, 5-96
viQueryf, 5-106
viScanf, 5-118
viSPrintf, 5-132
viSScanf, 5-134
viVPrintf, 5-149
viVQueryf, 5-151
viVScanf, 5-153
viVSPrintf, 5-155
viVSScanf, 5-157

formatted I/O services
INTFC Resource, 2-4
SERVANT Resource, 2-5
SOCKET Resource, 2-5

formatted I/O services, INSTR Resource, 2-2

G
getting started, 1-1
GPIB attributes

VI_ATTR_GPIB_ADDR_STATE, 3-37
VI_ATTR_GPIB_ATN_STATE, 3-38
VI_ATTR_GPIB_CIC_STATE, 3-39
VI_ATTR_GPIB_HS488_CBL_LEN,

3-40
VI_ATTR_GPIB_NDAC_STATE, 3-41
VI_ATTR_GPIB_PRIMARY_ADDR,

3-42
VI_ATTR_GPIB_READDR_EN, 3-43
VI_ATTR_GPIB_RECV_CIC_STATE,

3-44

VI_ATTR_GPIB_REN_STATE, 3-45
VI_ATTR_GPIB_SECONDARY_

ADDR, 3-46
VI_ATTR_GPIB_SRQ_STATE, 3-47
VI_ATTR_GPIB_SYS_CNTRL_

STATE, 3-48
VI_ATTR_GPIB_UNADDR_EN, 3-49
VI_ATTR_INTF_PARENT_NUM, 3-53

H
handlers

viEventHandler, 5-25
viInstallHandler, 5-53
viUninstallHandler, 5-140

how to use this manual set, xiii

I
INSTR Resource

attributes, B-2
VI_ATTR_ASRL_ALLOW_

TRANSMIT, 3-2
VI_ATTR_ASRL_AVAIL_NUM,

3-3
VI_ATTR_ASRL_BAUD, 3-4
VI_ATTR_ASRL_BREAK_LEN,

3-5
VI_ATTR_ASRL_BREAK_

STATE, 3-6
VI_ATTR_ASRL_CTS_STATE,

3-7
VI_ATTR_ASRL_DATA_BITS,

3-8
VI_ATTR_ASRL_DCD_STATE,

3-9
VI_ATTR_ASRL_DISCARD_

NULL, 3-10
VI_ATTR_ASRL_DSR_STATE,

3-11
VI_ATTR_ASRL_DTR_STATE,

3-12

Index

NI-VISA Programmer Reference Manual I-6 ni.com

VI_ATTR_ASRL_END_IN, 3-13
VI_ATTR_ASRL_END_OUT, 3-14
VI_ATTR_ASRL_FLOW_CNTRL,

3-15
VI_ATTR_ASRL_PARITY, 3-17
VI_ATTR_ASRL_REPLACE_

CHAR, 3-18
VI_ATTR_ASRL_RI_STATE, 3-19
VI_ATTR_ASRL_RTS_STATE,

3-20
VI_ATTR_ASRL_STOP_BITS,

3-21
VI_ATTR_ASRL_WIRE_MODE,

3-22
VI_ATTR_ASRL_XOFF_CHAR,

3-23
VI_ATTR_ASRL_XON_CHAR,

3-24
VI_ATTR_CMDR_LA, 3-26
VI_ATTR_DEST_ACCESS_PRIV,

3-27
VI_ATTR_DEST_BYTE_ORDER,

3-28
VI_ATTR_DEST_INCREMENT,

3-29
VI_ATTR_DMA_ALLOW_EN,

3-31
VI_ATTR_FDC_CHNL, 3-33
VI_ATTR_FDC_MODE, 3-34
VI_ATTR_FDC_USE_PAIR, 3-35
VI_ATTR_FILE_APPEND_EN,

3-36
VI_ATTR_GPIB_PRIMARY_

ADDR, 3-42
VI_ATTR_GPIB_READDR_EN,

3-43
VI_ATTR_GPIB_REN_STATE,

3-45
VI_ATTR_GPIB_SECONDARY_

ADDR, 3-46
VI_ATTR_GPIB_UNADDR_EN,

3-49

VI_ATTR_IMMEDIATE_SERV,
3-50

VI_ATTR_INTF_INST_NAME,
3-51

VI_ATTR_INTF_NUM, 3-52
VI_ATTR_INTF_PARENT_NUM,

3-53
VI_ATTR_INTF_TYPE, 3-54
VI_ATTR_IO_PROT, 3-56
VI_ATTR_MAINFRAME_LA,

3-58
VI_ATTR_MANF_ID, 3-59
VI_ATTR_MANF_NAME, 3-60
VI_ATTR_MEM_BASE, 3-62
VI_ATTR_MEM_SIZE, 3-63
VI_ATTR_MEM_SPACE, 3-64
VI_ATTR_MODEL_CODE, 3-65
VI_ATTR_MODEL_NAME, 3-66
VI_ATTR_RD_BUF_OPER_

MODE, 3-75
VI_ATTR_SEND_END_EN, 3-89
VI_ATTR_SLOT, 3-91
VI_ATTR_SRC_ACCESS_PRIV,

3-92
VI_ATTR_SRC_BYTE_ORDER,

3-93
VI_ATTR_SRC_INCREMENT,

3-94
VI_ATTR_SUPPRESS_END_EN,

3-96
VI_ATTR_TCPIP_ADDR, 3-97
VI_ATTR_TCPIP_DEVICE_

NAME, 3-98
VI_ATTR_TCPIP_HOSTNAME,

3-99
VI_ATTR_TERMCHAR, 3-103
VI_ATTR_TERMCHAR_EN, 3-104
VI_ATTR_TMO_VALUE, 3-105
VI_ATTR_TRIG_ID, 3-106
VI_ATTR_VXI_DEV_CLASS,

3-108

Index

© National Instruments Corporation I-7 NI-VISA Programmer Reference Manual

VI_ATTR_VXI_LA, 3-109
VI_ATTR_VXI_TRIG_SUPPORT,

3-111
VI_ATTR_WIN_ACCESS, 3-114
VI_ATTR_WIN_ACCESS_PRIV,

3-115
VI_ATTR_WIN_BASE_ADDR,

3-116
VI_ATTR_WIN_BYTE_ORDER,

3-117
VI_ATTR_WIN_SIZE, 3-118
VI_ATTR_WR_BUF_OPER_

MODE, 3-119
basic I/O services, 2-2
events, B-4

VI_EVENT_ASRL_BREAK, 4-2
VI_EVENT_ASRL_CHAR, 4-3
VI_EVENT_ASRL_CTS, 4-4
VI_EVENT_ASRL_DCD, 4-5
VI_EVENT_ASRL_DSR, 4-6
VI_EVENT_ASRL_RI, 4-7
VI_EVENT_ASRL_TERMCHAR,

4-8
VI_EVENT_IO_COMPLETION,

4-15
VI_EVENT_SERVICE_REQ, 4-17
VI_EVENT_TRIG, 4-18
VI_EVENT_VXI_SIGP, 4-19
VI_EVENT_VXI_VME_INTR,

4-20
formatted I/O services, 2-2
memory I/O services, 2-2
operations, B-5

viAssertTrigger, 5-4
viBufRead, 5-9
viBufWrite, 5-12
viClear, 5-14
viFlush, 5-34
viGpibControlREN, 5-44
viInx, 5-50
viMapAddress, 5-58

viMemAlloc, 5-64
viMemFree, 5-66
viMove, 5-68
viMoveAsync, 5-71
viMoveInx, 5-74
viMoveOutx, 5-77
viOutx, 5-87
viPeekx, 5-92
viPokex, 5-94
viPrintf, 5-96
viQueryf, 5-106
viRead, 5-108
viReadAsync, 5-111
viReadSTB, 5-113
viReadToFile, 5-115
viScanf, 5-118
viSetBuf, 5-130
viSPrintf, 5-132
viSScanf, 5-134
viUnmapAddress, 5-144
viVPrintf, 5-149
viVQueryf, 5-151
viVScanf, 5-153
viVSPrintf, 5-155
viVSScanf, 5-157
viVxiCommandQuery, 5-159
viWrite, 5-165
viWriteAsync, 5-167
viWriteFromFile, 5-169

purpose and use, 2-2
shared memory services, 2-2

INSTR Resource type
description, 2-2

interrupts
VI_ATTR_INTR_STATUS_ID, 3-55
VI_EVENT_VXI_VME_INTR, 4-20

INTFC Resource
attributes, B-7

VI_ATTR_DEV_STATUS_BYTE,
3-30

Index

NI-VISA Programmer Reference Manual I-8 ni.com

VI_ATTR_DMA_ALLOW_EN,
3-31

VI_ATTR_FILE_APPEND_EN,
3-36

VI_ATTR_GPIB_ATN_STATE,
3-38

VI_ATTR_GPIB_CIC_STATE,
3-39

VI_ATTR_GPIB_HS488_CBL_
LEN, 3-40

VI_ATTR_GPIB_NDAC_STATE,
3-41

VI_ATTR_GPIB_PRIMARY_
ADDR, 3-42

VI_ATTR_GPIB_REN_STATE,
3-45

VI_ATTR_GPIB_SECONDARY_
ADDR, 3-46

VI_ATTR_GPIB_SRQ_STATE,
3-47

VI_ATTR_GPIB_SYS_CNTRL_
STATE, 3-48

VI_ATTR_INTF_INST_NAME,
3-51

VI_ATTR_INTF_NUM, 3-52
VI_ATTR_INTF_TYPE, 3-54
VI_ATTR_RD_BUF_OPER_

MODE, 3-75
VI_ATTR_SEND_END_EN, 3-89
VI_ATTR_TERMCHAR, 3-103
VI_ATTR_TERMCHAR_EN, 3-104
VI_ATTR_TMO_VALUE, 3-105
VI_ATTR_TRIG_ID, 3-106
VI_ATTR_WR_BUF_OPER_

MODE, 3-119
basic I/O services, 2-4
events, B-8

VI_EVENT_CLEAR, 4-9
VI_EVENT_GPIB_CIC, 4-12
VI_EVENT_GPIB_LISTEN, 4-13
VI_EVENT_GPIB_TALK, 4-14

VI_EVENT_IO_COMPLETION,
4-15

VI_EVENT_SERVICE_REQ, 4-17
VI_EVENT_TRIG, 4-18

formatted I/O services, 2-4
operations, B-8

viAssertTrigger, 5-4
viBufRead, 5-9
viBufWrite, 5-12
viFlush, 5-34
viGpibCommand, 5-39
viGpibControlATN, 5-41
viGpibControlREN, 5-44
viGpibPassControl, 5-46
viGpibSendIFC, 5-48
viPrintf, 5-96
viRead, 5-108
viReadAsync, 5-111
viReadToFile, 5-115
viScanf, 5-118
viSetBuf, 5-130
viSPrintf, 5-132
viSScanf, 5-134
viVPrintf, 5-149
viVScanf, 5-153
viVSPrintf, 5-155
viVSScanf, 5-157
viWrite, 5-165
viWriteAsync, 5-167
viWriteFromFile, 5-169

purpose and use, 2-4
INTFC Resource type

description, 2-4

L
locking

VI_ATTR_RSRC_LOCK_STATE, 3-83
viLock, 5-55
viUnlock, 5-142

Index

© National Instruments Corporation I-9 NI-VISA Programmer Reference Manual

logical address
VI_ATTR_CMDR_LA, 3-26
VI_ATTR_MAINFRAME_LA, 3-58
VI_ATTR_VXI_LA, 3-109

M
manufacturer information

VI_ATTR_MANF_ID, 3-59
VI_ATTR_RSRC_MANF_ID, 3-84
VI_ATTR_RSRC_MANF_NAME, 3-85

MEMACC Resource
attributes, B-6

VI_ATTR_DEST_ACCESS_PRIV,
3-27

VI_ATTR_DEST_BYTE_ORDER,
3-28

VI_ATTR_DEST_INCREMENT,
3-29

VI_ATTR_DMA_ALLOW_EN,
3-31

VI_ATTR_GPIB_PRIMARY_
ADDR, 3-42

VI_ATTR_GPIB_SECONDARY_
ADDR, 3-46

VI_ATTR_INTF_INST_NAME,
3-51

VI_ATTR_INTF_NUM, 3-52
VI_ATTR_INTF_PARENT_NUM,

3-53
VI_ATTR_INTF_TYPE, 3-54
VI_ATTR_SRC_ACCESS_PRIV,

3-92
VI_ATTR_SRC_BYTE_ORDER,

3-93
VI_ATTR_SRC_INCREMENT,

3-94
VI_ATTR_TMO_VALUE, 3-105
VI_ATTR_VXI_LA, 3-109
VI_ATTR_WIN_ACCESS, 3-114
VI_ATTR_WIN_ACCESS_PRIV,

3-115

VI_ATTR_WIN_BASE_ADDR,
3-116

VI_ATTR_WIN_BYTE_ORDER,
3-117

VI_ATTR_WIN_SIZE, 3-118
events, B-6

VI_EVENT_IO_COMPLETION,
4-15

memory I/O services, 2-3
operations, B-7

viInx, 5-50
viMapAddress, 5-58
viMove, 5-68
viMoveAsync, 5-71
viMoveInx, 5-74
viMoveOutx, 5-77
viOutx, 5-87
viPeekx, 5-92
viPokex, 5-94
viUnmapAddress, 5-144

purpose and use, 2-3
MEMACC Resource type

description, 2-3
memory I/O services

INSTR Resource, 2-2
MEMACC Resource, 2-3

memory space operations
viIn8 / viIn16 / viIn32, 5-50
viMoveIn8 / viMoveIn16 / viMoveIn32,

5-74
viMoveOut8 / viMoveOut16 /

viMoveOut32, 5-77
viOut8 / viOut16 / viOut32, 5-87
viPeek8 / viPeek16 / viPeek32, 5-92
viPoke8 / viPoke16 / viPoke32, 5-94

move operations
viMove, 5-68
viMoveAsync, 5-71
viMoveIn8 / viMoveIn16 / viMoveIn32,

5-74

Index

NI-VISA Programmer Reference Manual I-10 ni.com

viMoveOut8 / viMoveOut16 /
viMoveOut32, 5-77

N
National Instruments Web support, C-1
NI Developer Zone, C-1
NI-VISA support (table), 1-2

O
open operations

viOpen, 5-80
viOpenDefaultRM, 5-85

operations
access mechanism for VISA, 2-2
BACKPLANE Resource, B-9
definition, 2-2
INSTR Resource, B-5
INTFC Resource, B-8
MEMACC Resource, B-7
overview, 2-2
SERVANT Resource, B-10
SOCKET Resource, B-12
viAssertIntrSignal, 5-2
viAssertTrigger, 5-4
viAssertUtilSignal, 5-7
viBufRead, 5-9
viBufWrite, 5-12
viClear, 5-14
viClose, 5-16
viDisableEvent, 5-18
viDiscardEvents, 5-20
viEnableEvent, 5-22
viEventHandler, 5-25
viFindNext, 5-27
viFindRsrc, 5-29
viFlush, 5-34
viGetAttribute, 5-37
viGpibCommand, 5-39
viGpibControlATN, 5-41

viGpibControlREN, 5-44
viGpibPassControl, 5-46
viGpibSendIFC, 5-48
viInstallHandler, 5-53
viInx, 5-50
viLock, 5-55
viMapAddress, 5-58
viMapTrigger, 5-61
viMemAlloc, 5-64
viMemFree, 5-66
viMove, 5-68
viMoveAsync, 5-71
viMoveInx, 5-74
viMoveOutx, 5-77
viOpen, 5-80
viOpenDefaultRM, 5-85
viOutx, 5-87
viParseRsrc, 5-90
viPeekx, 5-92
viPokex, 5-94
viPrintf, 5-96
viQueryf, 5-106
viRead, 5-108
viReadAsync, 5-111
viReadSTB, 5-113
viReadToFile, 5-115
VISA Resource Manager, B-2
VISA Resource Template, B-1
viScanf, 5-118
viSetAttribute, 5-128
viSetBuf, 5-130
viSPrintf, 5-132
viSScanf, 5-134
viStatusDesc, 5-136
viTerminate, 5-138
viUninstallHandler, 5-140
viUnlock, 5-142
viUnmapAddress, 5-144
viUnmapTrigger, 5-146
viVPrintf, 5-149

Index

© National Instruments Corporation I-11 NI-VISA Programmer Reference Manual

viVQueryf, 5-151
viVScanf, 5-153
viVSPrintf, 5-155
viVSScanf, 5-157
viVxiCommandQuery, 5-159
viWaitOnEvent, 5-162
viWrite, 5-165
viWriteAsync, 5-167
viWriteFromFile, 5-169

P
parity, 3-17
programming language support for NI-VISA

(table), 1-2

R
read operations

viBufRead, 5-9
viRead, 5-108
viReadAsync, 5-111
viReadSTB, 5-113

related documentation, xiv
Resource Manager. See VISA Resource

Manager

S
SERVANT Resource

attributes, B-10
VI_ATTR_CMDR_LA, 3-26
VI_ATTR_DEV_STATUS_BYTE,

3-30
VI_ATTR_DMA_ALLOW_EN,

3-31
VI_ATTR_FILE_APPEND_EN,

3-36
VI_ATTR_GPIB_PRIMARY_

ADDR, 3-42

VI_ATTR_GPIB_REN_STATE,
3-45

VI_ATTR_GPIB_SECONDARY_
ADDR, 3-46

VI_ATTR_INTF_INST_NAME,
3-51

VI_ATTR_INTF_NUM, 3-52
VI_ATTR_INTF_TYPE, 3-54
VI_ATTR_IO_PROT, 3-56
VI_ATTR_RD_BUF_OPER_

MODE, 3-75
VI_ATTR_SEND_END_EN, 3-89
VI_ATTR_TERMCHAR, 3-103
VI_ATTR_TERMCHAR_EN, 3-104
VI_ATTR_TMO_VALUE, 3-105
VI_ATTR_TRIG_ID, 3-106
VI_ATTR_VXI_LA, 3-109
VI_ATTR_VXI_VME_SYSFAIL_

STATE, 3-113
VI_ATTR_WR_BUF_OPER_

MODE, 3-119
basic I/O services, 2-5
events, B-10

VI_EVENT_CLEAR, 4-9
VI_EVENT_GPIB_LISTEN, 4-13
VI_EVENT_GPIB_TALK, 4-14
VI_EVENT_IO_COMPLETION,

4-15
VI_EVENT_TRIG, 4-18
VI_EVENT_VXI_VME_

SYSRESET, 4-22
formatted I/O services, 2-5
operations, B-10

viAssertIntrSignal, 5-2
viAssertUtilSignal, 5-7
viBufRead, 5-9
viBufWrite, 5-12
viFlush, 5-34
viPrintf, 5-96
viRead, 5-108

Index

NI-VISA Programmer Reference Manual I-12 ni.com

viReadAsync, 5-111
viReadToFile, 5-115
viScanf, 5-118
viSetBuf, 5-130
viSPrintf, 5-132
viSScanf, 5-134
viVPrintf, 5-149
viVScanf, 5-153
viVSPrintf, 5-155
viVSScanf, 5-157
viWrite, 5-165
viWriteAsync, 5-167
viWriteFromFile, 5-169

purpose and use, 2-4
SERVANT Resource type

description, 2-4
service requests

VI_EVENT_SERVICE_REQ, 4-17
viReadSTB, 5-113

sessions
VI_ATTR_INTF_TYPE, 3-54
VI_ATTR_RM_SESSION, 3-80
viClose, 5-16
viOpen, 5-80

shared memory services
INSTR Resource, 2-2

SOCKET Resource
attributes, B-11

VI_ATTR_FILE_APPEND_EN,
3-36

VI_ATTR_INTF_INST_NAME,
3-51

VI_ATTR_INTF_NUM, 3-52
VI_ATTR_INTF_TYPE, 3-54
VI_ATTR_IO_PROT, 3-56
VI_ATTR_RD_BUF_OPER_

MODE, 3-75
VI_ATTR_SEND_END_EN, 3-89
VI_ATTR_TCPIP_ADDR, 3-97
VI_ATTR_TCPIP_HOSTNAME,

3-99

VI_ATTR_TCPIP_KEEPALIVE,
3-100

VI_ATTR_TCPIP_NODELAY,
3-101

VI_ATTR_TCPIP_PORT, 3-102
VI_ATTR_TERMCHAR, 3-103
VI_ATTR_TERMCHAR_EN, 3-104
VI_ATTR_TMO_VALUE, 3-105
VI_ATTR_TRIG_ID, 3-106
VI_ATTR_WR_BUF_OPER_MOD

E, 3-119
basic I/O services, 2-5
events, B-12

VI_EVENT_IO_COMPLETION,
4-15

formatted I/O services, 2-5
operations, B-12

viAssertTrigger, 5-4
viBufRead, 5-9
viBufWrite, 5-12
viClear, 5-14
viFlush, 5-34
viPrintf, 5-96
viQueryf, 5-106
viRead, 5-108
viReadAsync, 5-111
viReadSTB, 5-113
viReadToFile, 5-115
viScanf, 5-118
viSetBuf, 5-130
viSPrintf, 5-132
viSScanf, 5-134
viVPrintf, 5-149
viVQueryf, 5-151
viVScanf, 5-153
viVSPrintf, 5-155
viVSScanf, 5-157
viWrite, 5-165
viWriteAsync, 5-167
viWriteFromFile, 5-169

purpose and use, 2-5

Index

© National Instruments Corporation I-13 NI-VISA Programmer Reference Manual

SOCKET Resource type
description, 2-5

status codes
completion codes (table), A-1
error codes (table), A-2
retrieving with viStatusDesc

operation, 5-136
stop bits, 3-21
supported platforms, 1-2

NI-VISA support (table), 1-2
system integration, by National

Instruments, C-1

T
technical support resources, C-1
termination

VI_ATTR_ASRL_END_IN, 3-13
VI_ATTR_ASRL_END_OUT, 3-14
VI_ATTR_TERMCHAR, 3-103
VI_ATTR_TERMCHAR_EN, 3-104
viTerminate, 5-138

timeout value (VI_ATTR_TMO_VALUE),
3-105

triggering
VI_ATTR_RECV_TRIG_ID, 3-78
VI_ATTR_TRIG_ID, 3-106
VI_EVENT_TRIG, 4-18
viAssertTrigger, 5-4

U
user data. See VI_ATTR_USER_DATA

V
VI_ATTR_ASRL_ALLOW_TRANSMIT,

3-2
VI_ATTR_ASRL_AVAIL_NUM, 3-3
VI_ATTR_ASRL_BAUD, 3-4
VI_ATTR_ASRL_BREAK_LEN, 3-5

VI_ATTR_ASRL_BREAK_STATE, 3-6
VI_ATTR_ASRL_CTS_STATE, 3-7
VI_ATTR_ASRL_DATA_BITS, 3-8
VI_ATTR_ASRL_DCD_STATE, 3-9
VI_ATTR_ASRL_DISCARD_NULL, 3-10
VI_ATTR_ASRL_DSR_STATE, 3-11
VI_ATTR_ASRL_DTR_STATE, 3-12
VI_ATTR_ASRL_END_IN, 3-13
VI_ATTR_ASRL_END_OUT, 3-14
VI_ATTR_ASRL_FLOW_CNTRL, 3-15
VI_ATTR_ASRL_PARITY, 3-17
VI_ATTR_ASRL_REPLACE_CHAR, 3-18
VI_ATTR_ASRL_RI_STATE, 3-19
VI_ATTR_ASRL_RTS_STATE, 3-20
VI_ATTR_ASRL_STOP_BITS, 3-21
VI_ATTR_ASRL_WIRE_MODE, 3-22
VI_ATTR_ASRL_XOFF_CHAR, 3-23
VI_ATTR_ASRL_XON_CHAR, 3-24
VI_ATTR_BUFFER, 3-25
VI_ATTR_CMDR_LA, 3-26
VI_ATTR_DEST_ACCESS_PRIV, 3-27
VI_ATTR_DEST_BYTE_ORDER, 3-28
VI_ATTR_DEST_INCREMENT, 3-29
VI_ATTR_DEV_STATUS_BYTE, 3-30
VI_ATTR_DMA_ALLOW_EN, 3-31
VI_ATTR_EVENT_TYPE, 3-32
VI_ATTR_FDC_CHNL, 3-33
VI_ATTR_FDC_MODE, 3-34
VI_ATTR_FDC_USE_PAIR, 3-35
VI_ATTR_FILE_APPEND_EN, 3-36
VI_ATTR_GPIB_ADDR_STATE, 3-37
VI_ATTR_GPIB_ATN_STATE, 3-38
VI_ATTR_GPIB_CIC_STATE, 3-39
VI_ATTR_GPIB_HS488_CBL_LEN, 3-40
VI_ATTR_GPIB_NDAC_STATE, 3-41
VI_ATTR_GPIB_PRIMARY_ADDR, 3-42
VI_ATTR_GPIB_READDR_EN, 3-43
VI_ATTR_GPIB_RECV_CIC_STATE, 3-44
VI_ATTR_GPIB_REN_STATE, 3-45
VI_ATTR_GPIB_SECONDARY_ADDR,

3-46

Index

NI-VISA Programmer Reference Manual I-14 ni.com

VI_ATTR_GPIB_SRQ_STATE, 3-47
VI_ATTR_GPIB_SYS_CNTRL_STATE,

3-48
VI_ATTR_GPIB_UNADDR_EN, 3-49
VI_ATTR_IMMEDIATE_SERV, 3-50
VI_ATTR_INTF_INST_NAME, 3-51
VI_ATTR_INTF_NUM, 3-52
VI_ATTR_INTF_PARENT_NUM, 3-53
VI_ATTR_INTF_TYPE, 3-54
VI_ATTR_INTR_STATUS_ID, 3-55
VI_ATTR_IO_PROT, 3-56
VI_ATTR_JOB_ID, 3-57
VI_ATTR_MAINFRAME_LA, 3-58
VI_ATTR_MANF_ID, 3-59
VI_ATTR_MANF_NAME, 3-60
VI_ATTR_MAX_QUEUE_LENGTH, 3-61
VI_ATTR_MEM_BASE, 3-62
VI_ATTR_MEM_SIZE, 3-63
VI_ATTR_MEM_SPACE, 3-64
VI_ATTR_MODEL_CODE, 3-65
VI_ATTR_MODEL_NAME, 3-66
VI_ATTR_OPER_NAME, 3-67
VI_ATTR_PXI_DEV_NUM, 3-68
VI_ATTR_PXI_FUNC_NUM, 3-69
VI_ATTR_PXI_MEM_BASE_BARx, 3-70
VI_ATTR_PXI_MEM_SIZE_BARx, 3-71
VI_ATTR_PXI_MEM_TYPE_BARx, 3-72
VI_ATTR_PXI_SUB_MANF_ID, 3-73
VI_ATTR_PXI_SUB_MODEL_CODE, 3-74
VI_ATTR_RD_BUF_OPER_MODE, 3-75
VI_ATTR_RD_BUF_SIZE, 3-76
VI_ATTR_RECV_INTR_LEVEL, 3-77
VI_ATTR_RECV_TRIG_ID, 3-78
VI_ATTR_RET_COUNT, 3-79
VI_ATTR_RM_SESSION, 3-80
VI_ATTR_RSRC_CLASS, 3-81
VI_ATTR_RSRC_IMPL_VERSION, 3-82
VI_ATTR_RSRC_LOCK_STATE, 3-83
VI_ATTR_RSRC_MANF_ID, 3-84
VI_ATTR_RSRC_MANF_NAME, 3-85
VI_ATTR_RSRC_NAME, 3-86

VI_ATTR_RSRC_SPEC_VERSION, 3-88
VI_ATTR_SEND_END_EN, 3-89
VI_ATTR_SIGP_STATUS_ID, 3-90
VI_ATTR_SLOT, 3-91
VI_ATTR_SRC_ACCESS_PRIV, 3-92
VI_ATTR_SRC_BYTE_ORDER, 3-93
VI_ATTR_SRC_INCREMENT, 3-94
VI_ATTR_STATUS, 3-95
VI_ATTR_SUPPRESS_END_EN, 3-96
VI_ATTR_TCPIP_ADDR, 3-97
VI_ATTR_TCPIP_DEVICE_NAME, 3-98
VI_ATTR_TCPIP_HOSTNAME, 3-99
VI_ATTR_TCPIP_KEEPALIVE, 3-100
VI_ATTR_TCPIP_NODELAY, 3-101
VI_ATTR_TCPIP_PORT, 3-102
VI_ATTR_TERMCHAR, 3-103
VI_ATTR_TERMCHAR_EN, 3-104
VI_ATTR_TMO_VALUE, 3-105
VI_ATTR_TRIG_ID, 3-106
VI_ATTR_USER_DATA, 3-107
VI_ATTR_VXI_DEV_CLASS, 3-108
VI_ATTR_VXI_LA, 3-109
VI_ATTR_VXI_TRIG_STATUS, 3-110
VI_ATTR_VXI_TRIG_SUPPORT, 3-111
VI_ATTR_VXI_VME_INTR_STATUS,

3-112
VI_ATTR_VXI_VME_SYSFAIL_STATE,

3-113
VI_ATTR_WIN_ACCESS, 3-114
VI_ATTR_WIN_ACCESS_PRIV, 3-115
VI_ATTR_WIN_BASE_ADDR, 3-116
VI_ATTR_WIN_BYTE_ORDER, 3-117
VI_ATTR_WIN_SIZE, 3-118
VI_ATTR_WR_BUF_OPER_MODE, 3-119
VI_ATTR_WR_BUF_SIZE, 3-120
VI_EVENT_ASRL_BREAK, 4-2
VI_EVENT_ASRL_CHAR, 4-3
VI_EVENT_ASRL_CTS, 4-4
VI_EVENT_ASRL_DCD, 4-5
VI_EVENT_ASRL_DSR, 4-6
VI_EVENT_ASRL_RI, 4-7

Index

© National Instruments Corporation I-15 NI-VISA Programmer Reference Manual

VI_EVENT_ASRL_TERMCHAR, 4-8
VI_EVENT_CLEAR, 4-9
VI_EVENT_EXCEPTION, 4-10
VI_EVENT_GPIB_CIC, 4-12
VI_EVENT_GPIB_LISTEN, 4-13
VI_EVENT_GPIB_TALK, 4-14
VI_EVENT_IO_COMPLETION, 4-15
VI_EVENT_PXI_INTR, 4-16
VI_EVENT_SERVICE_REQ, 4-17
VI_EVENT_TRIG, 4-18
VI_EVENT_VXI_SIGP, 4-19
VI_EVENT_VXI_VME_INTR, 4-20
VI_EVENT_VXI_VME_SYSFAIL, 4-21
VI_EVENT_VXI_VME_SYSRESET, 4-22
viAssertIntrSignal, 5-2
viAssertTrigger, 5-4
viAssertUtilSignal, 5-7
viBufRead, 5-9
viBufWrite, 5-12
viClear, 5-14
viClose, 5-16
viDisableEvent, 5-18
viDiscardEvents, 5-20
viEnableEvent, 5-22
viEventHandler, 5-25
viFindNext, 5-27
viFindRsrc, 5-29
viFlush, 5-34
viGetAttribute, 5-37
viGpibCommand, 5-39
viGpibControlATN, 5-41
viGpibControlREN, 5-44
viGpibPassControl, 5-46
viGpibSendIFC, 5-48
viInstallHandler, 5-53
viInx, 5-50
viLock, 5-55
viMapAddress, 5-58
viMapTrigger, 5-61
viMemAlloc, 5-64

viMemFree, 5-66
viMove, 5-68
viMoveAsync, 5-71
viMoveInx, 5-74
viMoveOutx, 5-77
viOpen, 5-80
viOpenDefaultRM, 5-85
viOutx, 5-87
viParseRsrc, 5-90
viPeekx, 5-92
viPokex, 5-94
viPrintf, 5-96
viQueryf, 5-106
viRead, 5-108
viReadAsync, 5-111
viReadSTB, 5-113
viReadToFile, 5-115
VISA Access Mechanisms

attributes, 2-1
events, 2-1
operations, 2-2

VISA API
overview, 2-1

VISA Resource Manager
attributes, B-2
operations, B-2

viFindNext, 5-27
viFindRsrc, 5-29
viOpen, 5-80
viOpenDefaultRM, 5-85
viParseRsrc, 5-90

VISA Resource Template
attributes, B-1

VI_ATTR_MAX_QUEUE_
LENGTH, 3-61

VI_ATTR_RM_SESSION, 3-80
VI_ATTR_RSRC_CLASS, 3-81
VI_ATTR_RSRC_IMPL_

VERSION, 3-82
VI_ATTR_RSRC_LOCK_STATE,

3-83

Index

NI-VISA Programmer Reference Manual I-16 ni.com

VI_ATTR_RSRC_MANF_ID, 3-84
VI_ATTR_RSRC_MANF_NAME,

3-85
VI_ATTR_RSRC_NAME, 3-86
VI_ATTR_RSRC_SPEC_

VERSION, 3-88
VI_ATTR_USER_DATA, 3-107

events, B-1
VI_EVENT_EXCEPTION, 4-10

operations, B-1
viClose, 5-16
viDisableEvent, 5-18
viDiscardEvents, 5-20
viEnableEvent, 5-22
viGetAttribute, 5-37
viInstallHandler, 5-53
viLock, 5-55
viSetAttribute, 5-128
viStatusDesc, 5-136
viTerminate, 5-138
viUninstallHandler, 5-140
viUnlock, 5-142
viWaitOnEvent, 5-162

VISA Resource types, descriptions
BACKPLANE, 2-4
INSTR, 2-2
INTFC, 2-4
MEMACC, 2-3
SERVANT, 2-4
SOCKET, 2-5

viScanf, 5-118
viSetAttribute, 5-128
viSetBuf, 5-130
viSPrintf, 5-132
viSScanf, 5-134
viStatusDesc, 5-136
viTerminate, 5-138
viUninstallHandler, 5-140
viUnlock, 5-142
viUnmapAddress, 5-144
viUnmapTrigger, 5-146

viVPrintf, 5-149
viVQueryf, 5-151
viVScanf, 5-153
viVSPrintf, 5-155
viVSScanf, 5-157
viVxiCommandQuery, 5-159
viWaitOnEvent, 5-162
viWrite, 5-165
viWriteAsync, 5-167
viWriteFromFile, 5-169
VXIplug&play

overview, 1-1

W
Web support from National Instruments, C-1
window attributes

VI_ATTR_WIN_ACCESS, 3-114
VI_ATTR_WIN_ACCESS_PRIV, 3-115
VI_ATTR_WIN_BASE_ADDR, 3-116
VI_ATTR_WIN_BYTE_ORDER, 3-117
VI_ATTR_WIN_SIZE, 3-118

worldwide technical support, C-2
write operations

viWrite, 5-165
viWriteAsync, 5-167

X
XOFF character, 3-23
XON character, 3-24

	NI-VISA™ Programmer Reference Manual
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	How to Use the Manual Set
	Conventions
	Related Documentation

	Chapter 1 Introduction
	What You Need to Get Started
	VXIplug&play Overview
	Supported Platforms
	Table 1-1. NI-VISA Support

	Chapter 2 Overview of the VISA API
	VISA Access Mechanisms
	Attributes
	Events
	Operations

	VISA Resource Types
	INSTR
	MEMACC
	INTFC
	BACKPLANE
	SERVANT
	SOCKET

	Description of the API

	Chapter 3 Attributes
	VI_ATTR_ASRL_ALLOW_TRANSMIT
	VI_ATTR_ASRL_AVAIL_NUM
	VI_ATTR_ASRL_BAUD
	VI_ATTR_ASRL_BREAK_LEN
	VI_ATTR_ASRL_BREAK_STATE
	VI_ATTR_ASRL_CTS_STATE
	VI_ATTR_ASRL_DATA_BITS
	VI_ATTR_ASRL_DCD_STATE
	VI_ATTR_ASRL_DISCARD_NULL
	VI_ATTR_ASRL_DSR_STATE
	VI_ATTR_ASRL_DTR_STATE
	VI_ATTR_ASRL_END_IN
	VI_ATTR_ASRL_END_OUT
	VI_ATTR_ASRL_FLOW_CNTRL
	VI_ATTR_ASRL_PARITY
	VI_ATTR_ASRL_REPLACE_CHAR
	VI_ATTR_ASRL_RI_STATE
	VI_ATTR_ASRL_RTS_STATE
	VI_ATTR_ASRL_STOP_BITS
	VI_ATTR_ASRL_WIRE_MODE
	VI_ATTR_ASRL_XOFF_CHAR
	VI_ATTR_ASRL_XON_CHAR
	VI_ATTR_BUFFER
	VI_ATTR_CMDR_LA
	VI_ATTR_DEST_ACCESS_PRIV
	VI_ATTR_DEST_BYTE_ORDER
	VI_ATTR_DEST_INCREMENT
	VI_ATTR_DEV_STATUS_BYTE
	VI_ATTR_DMA_ALLOW_EN
	VI_ATTR_EVENT_TYPE
	VI_ATTR_FDC_CHNL
	VI_ATTR_FDC_MODE
	VI_ATTR_FDC_USE_PAIR
	VI_ATTR_FILE_APPEND_EN
	VI_ATTR_GPIB_ADDR_STATE
	VI_ATTR_GPIB_ATN_STATE
	VI_ATTR_GPIB_CIC_STATE
	VI_ATTR_GPIB_HS488_CBL_LEN
	VI_ATTR_GPIB_NDAC_STATE
	VI_ATTR_GPIB_PRIMARY_ADDR
	VI_ATTR_GPIB_READDR_EN
	VI_ATTR_GPIB_RECV_CIC_STATE
	VI_ATTR_GPIB_REN_STATE
	VI_ATTR_GPIB_SECONDARY_ADDR
	VI_ATTR_GPIB_SRQ_STATE
	VI_ATTR_GPIB_SYS_CNTRL_STATE
	VI_ATTR_GPIB_UNADDR_EN
	VI_ATTR_IMMEDIATE_SERV
	VI_ATTR_INTF_INST_NAME
	VI_ATTR_INTF_NUM
	VI_ATTR_INTF_PARENT_NUM
	VI_ATTR_INTF_TYPE
	VI_ATTR_INTR_STATUS_ID
	VI_ATTR_IO_PROT
	VI_ATTR_JOB_ID
	VI_ATTR_MAINFRAME_LA
	VI_ATTR_MANF_ID
	VI_ATTR_MANF_NAME
	VI_ATTR_MAX_QUEUE_LENGTH
	VI_ATTR_MEM_BASE
	VI_ATTR_MEM_SIZE
	VI_ATTR_MEM_SPACE
	VI_ATTR_MODEL_CODE
	VI_ATTR_MODEL_NAME
	VI_ATTR_OPER_NAME
	VI_ATTR_PXI_DEV_NUM
	VI_ATTR_PXI_FUNC_NUM
	VI_ATTR_PXI_MEM_BASE_BAR0/VI_ATTR_PXI_MEM_BASE_BAR1/ VI_ATTR_PXI_MEM_BASE_BAR2/VI_ATTR_PXI_MEM_BA...
	VI_ATTR_PXI_MEM_SIZE_BAR0/VI_ATTR_PXI_MEM_SIZE_BAR1/ VI_ATTR_PXI_MEM_SIZE_BAR2/VI_ATTR_PXI_MEM_SI...
	VI_ATTR_PXI_MEM_TYPE_BAR0/VI_ATTR_PXI_MEM_TYPE_BAR1/ VI_ATTR_PXI_MEM_TYPE_BAR2/VI_ATTR_PXI_MEM_TY...
	VI_ATTR_PXI_SUB_MANF_ID
	VI_ATTR_PXI_SUB_MODEL_CODE
	VI_ATTR_RD_BUF_OPER_MODE
	VI_ATTR_RD_BUF_SIZE
	VI_ATTR_RECV_INTR_LEVEL
	VI_ATTR_RECV_TRIG_ID
	VI_ATTR_RET_COUNT
	VI_ATTR_RM_SESSION
	VI_ATTR_RSRC_CLASS
	VI_ATTR_RSRC_IMPL_VERSION
	VI_ATTR_RSRC_LOCK_STATE
	VI_ATTR_RSRC_MANF_ID
	VI_ATTR_RSRC_MANF_NAME
	VI_ATTR_RSRC_NAME
	VI_ATTR_RSRC_SPEC_VERSION
	VI_ATTR_SEND_END_EN
	VI_ATTR_SIGP_STATUS_ID
	VI_ATTR_SLOT
	VI_ATTR_SRC_ACCESS_PRIV
	VI_ATTR_SRC_BYTE_ORDER
	VI_ATTR_SRC_INCREMENT
	VI_ATTR_STATUS
	VI_ATTR_SUPPRESS_END_EN
	VI_ATTR_TCPIP_ADDR
	VI_ATTR_TCPIP_DEVICE_NAME
	VI_ATTR_TCPIP_HOSTNAME
	VI_ATTR_TCPIP_KEEPALIVE
	VI_ATTR_TCPIP_NODELAY
	VI_ATTR_TCPIP_PORT
	VI_ATTR_TERMCHAR
	VI_ATTR_TERMCHAR_EN
	VI_ATTR_TMO_VALUE
	VI_ATTR_TRIG_ID
	VI_ATTR_USER_DATA
	VI_ATTR_VXI_DEV_CLASS
	VI_ATTR_VXI_LA
	VI_ATTR_VXI_TRIG_STATUS
	VI_ATTR_VXI_TRIG_SUPPORT
	VI_ATTR_VXI_VME_INTR_STATUS
	VI_ATTR_VXI_VME_SYSFAIL_STATE
	VI_ATTR_WIN_ACCESS
	VI_ATTR_WIN_ACCESS_PRIV
	VI_ATTR_WIN_BASE_ADDR
	VI_ATTR_WIN_BYTE_ORDER
	VI_ATTR_WIN_SIZE
	VI_ATTR_WR_BUF_OPER_MODE
	VI_ATTR_WR_BUF_SIZE

	Chapter 4 Events
	VI_EVENT_ASRL_BREAK
	VI_EVENT_ASRL_CHAR
	VI_EVENT_ASRL_CTS
	VI_EVENT_ASRL_DCD
	VI_EVENT_ASRL_DSR
	VI_EVENT_ASRL_RI
	VI_EVENT_ASRL_TERMCHAR
	VI_EVENT_CLEAR
	VI_EVENT_EXCEPTION
	VI_EVENT_GPIB_CIC
	VI_EVENT_GPIB_LISTEN
	VI_EVENT_GPIB_TALK
	VI_EVENT_IO_COMPLETION
	VI_EVENT_PXI_INTR
	VI_EVENT_SERVICE_REQ
	VI_EVENT_TRIG
	VI_EVENT_VXI_SIGP
	VI_EVENT_VXI_VME_INTR
	VI_EVENT_VXI_VME_SYSFAIL
	VI_EVENT_VXI_VME_SYSRESET

	Chapter 5 Operations
	viAssertIntrSignal
	viAssertTrigger
	viAssertUtilSignal
	viBufRead
	viBufWrite
	viClear
	viClose
	viDisableEvent
	viDiscardEvents
	viEnableEvent
	viEventHandler
	viFindNext
	viFindRsrc
	viFlush
	viGetAttribute
	viGpibCommand
	viGpibControlATN
	viGpibControlREN
	viGpibPassControl
	viGpibSendIFC
	viIn8�/�viIn16�/�viIn32
	viInstallHandler
	viLock
	viMapAddress
	viMapTrigger
	viMemAlloc
	viMemFree
	viMove
	viMoveAsync
	viMoveIn8�/�viMoveIn16�/�viMoveIn32
	viMoveOut8�/�viMoveOut16�/�viMoveOut32
	viOpen
	viOpenDefaultRM
	viOut8�/�viOut16�/�viOut32
	viParseRsrc
	viPeek8�/�viPeek16�/�viPeek32
	viPoke8�/�viPoke16�/�viPoke32
	viPrintf
	viQueryf
	viRead
	viReadAsync
	viReadSTB
	viReadToFile
	viScanf
	viSetAttribute
	viSetBuf
	viSPrintf
	viSScanf
	viStatusDesc
	viTerminate
	viUninstallHandler
	viUnlock
	viUnmapAddress
	viUnmapTrigger
	viVPrintf
	viVQueryf
	viVScanf
	viVSPrintf
	viVSScanf
	viVxiCommandQuery
	viWaitOnEvent
	viWrite
	viWriteAsync
	viWriteFromFile

	Appendix A Status Codes
	Table A-1. Completion Codes
	Table A-2. Error Codes

	Appendix B Resources
	Appendix C Technical Support Resources
	Glossary
	A
	B
	C-D
	E-I
	L-M
	N-P
	R-S
	T
	V

	Index
	Numerics
	A
	B
	C-E
	F-I
	L
	M
	N-O
	P-S
	T-V
	W-X

